Fixed Point Theorems in Rectangular b-Metric Space Endowed with a Partial Order
Abstract
:1. Introduction
- (E-i.)
- There exist two continuous and nondecreasing maps such that and, for any ,holds;
- (E-ii.)
- There exist and a continuous and nondecreasing function such that and, for any ,holds;
- (E-iii.)
- There exists a continuous and nondecreasing function such that for all and, for any ,
2. Preliminaries
2.1. Partially Ordered Sets
- (H-i.)
- There exists such that for each , with ;
- (H-ii.)
- There exists such that .
2.2. Rectangular b-Metric Spaces
- (M-i.)
- if and only if for all ;
- (M-ii.)
- for all ;
- (M-iii.)
- There exists , a real number, such that
- (M-iv.)
- there is a real number such that
2.3. Rectangular b-Metric Spaces Endowed with a Partial Order
3. Main Result
- (T-i.)
- There exists such that ;
- (T-ii.)
- There exist and and such thatfor all ;
- (I-i.)
- The map Ł is Lebesque-integrable, i.e., Ł is summable on each compact subset of ;
- (I-ii.)
- for all ;
- (I-iii.)
- for each .
- (IT-i.)
- There exists such that ;
- (IT-ii.)
- There exist , and and such thatfor all .
- (F-i.)
- There exists such that , for any ;
- (F-ii.)
- and are continuous mappings;
- (F-iii.)
- The function maps real numbers to real numbers and is increasing for each ;
- (F-iv.)
- There exist and a continuous function from to , with such that
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Browder, F. (Ed.) The Mathematical Heritage of Henri Poincare; American Mathematical Society: Providence, RI, USA, 1983; Volume 391. [Google Scholar] [CrossRef]
- Pata, V. Fixed Point Theorems and Applications; Springer: Cham, Switzerlands, 2019; Volume 116. [Google Scholar]
- Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 2007, 136, 1359–1373. [Google Scholar] [CrossRef]
- Alfuraidan, M.; Ansari, Q.; Bachar, M.; Berinde, V.; Bin Dehaish, B.; Fukhar-ud din, H.; Khamsi, M.; Khan, A.; Maingé, P.E.; Abdellatif, M.; et al. Fixed Point Theory and Graph Theory—Foundations and Integrative Approaches; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Younis, M.; Ahmad, H.; Chen, L.; Han, M. Computation and convergence of fixed points in graphical spaces with an application to elastic beam deformations. J. Geom. Phys. 2023, 192, 104955. [Google Scholar] [CrossRef]
- Ran, A.C.; Reurings, M.C. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
- O’Regan, D.; Petruşel, A. Fixed point theorems for generalized contractions in ordered metric spaces. J. Math. Anal. Appl. 2008, 341, 1241–1252. [Google Scholar] [CrossRef]
- Khan, F.A. Almost Contractions under Binary Relations. Axioms 2022, 11, 441. [Google Scholar] [CrossRef]
- Horvat-Marc, A.; Cufoian, M.; Mitre, A. Some fixed point theorems on equivalent metric spaces. Carpathian J. Math. 2022, 38, 139–148. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc 1968, 10, 71–76. [Google Scholar]
- Debnath, P.; Srivastava, H.M. New Extensions of Kannan’s and Reich’s Fixed Point Theorems for Multivalued Maps Using Wardowski’s Technique with Application to Integral Equations. Symmetry 2020, 12, 1090. [Google Scholar] [CrossRef]
- Konwar, N.; Srivastava, R.; Debnath, P.; Srivastava, H.M. Some New Results for a Class of Multivalued Interpolative Kannan-Type Contractions. Axioms 2022, 11, 76. [Google Scholar] [CrossRef]
- Jachymski, J. Equivalent conditions for generalized contractions on (ordered) metric spaces. Nonlinear Anal. Theory, Methods Appl. 2011, 74, 768–774. [Google Scholar] [CrossRef]
- Caristi, J.; Kirk, W.A. Geometric fixed point theory and inwardness conditions. In Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1975; pp. 74–83. [Google Scholar] [CrossRef]
- Caristi, J. Fixed Point Theorems for Mappings Satisfying Inwardness Conditions. Trans. Am. Math. Soc. 1976, 215, 241. [Google Scholar] [CrossRef]
- Kirk, W.A.; Shahzad, N. Erratum to: Generalized metrics and Caristi’s theorem. Fixed Point Theory Appl. 2014, 2014, 177. [Google Scholar] [CrossRef]
- Karapınar, E.; Khojasteh, F.; Mitrović, Z. A Proposal for Revisiting Banach and Caristi Type Theorems in b-Metric Spaces. Mathematics 2019, 7, 308. [Google Scholar] [CrossRef]
- Berinde, V.; Păcurar, M. The early developments in fixed point theory on b-metric spaces: A brief survey and some important related aspects. Carpathian J. Math. 2022, 38, 523–538. [Google Scholar] [CrossRef]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debr. 2000, 57, 31–37. [Google Scholar] [CrossRef]
- George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 08, 1005–1013. [Google Scholar] [CrossRef]
- Öztürk, V. Fixed Point Theorems in $ b$-Rectangular Metric Spaces. Univers. J. Math. Appl. 2020, 3, 28–32. [Google Scholar] [CrossRef]
- Kari, A.; Rossafi, M.; Marhrani, E.M.; Aamri, M. New Fixed Point Theorems for θ-ϕ-Contraction on Rectangular b-Metric Spaces. Abstr. Appl. Anal. 2020, 2020, 8833214. [Google Scholar] [CrossRef]
- Harjani, J.; Sadarangani, K. Fixed point theorems for weakly contractive mappings in partially ordered sets. Nonlinear Anal. Theory Methods Appl. 2009, 71, 3403–3410. [Google Scholar] [CrossRef]
- DeMarr, R. Partially Ordered Spaces and Metric Spaces. Am. Math. Mon. 1965, 72, 628–631. [Google Scholar] [CrossRef]
- Abu-Sbeih, M.Z.; Khamsi, M.A. On externally complete subsets and common fixed points in partially ordered sets. Fixed Point Theory Appl. 2011, 2011, 97. [Google Scholar] [CrossRef]
- Karapinar, E. A Short Survey on the Recent Fixed Point Results on $b$-Metric Spaces. Constr. Math. Anal. 2018, 1, 15–44. [Google Scholar] [CrossRef]
- Mustafa, Z.; Karapınar, E.; Aydi, H. A discussion on generalized almost contractions via rational expressions in partially ordered metric spaces. J. Inequalities Appl. 2014, 2014, 219. [Google Scholar] [CrossRef]
- Nazir, T.; Silvestrov, S. Unique common fixed points of four generalized contractive mappings in ordered partial metric spaces. arXiv 2023, arXiv:2308.02523. [Google Scholar] [CrossRef]
- Rossafi, M.; Kari, A. New fixed point theorems for ϕ,F-contraction on rectangular b-metric spaces. Afr. Mat. 2023, 34, 34. [Google Scholar] [CrossRef]
- Bakhtin, I. The contraction mapping principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 01, 5–11. [Google Scholar]
- Fréchet, M.M. Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo (1884–1940) 1906, 22, 1–72. [Google Scholar] [CrossRef]
- Ding, H.S.; Imdad, M.; Radenović, S.; Vujaković, J. On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab J. Math. Sci. 2016, 22, 151–164. [Google Scholar] [CrossRef]
- Suzuki, T. Generalized Metric Spaces Do Not Have the Compatible Topology. Abstr. Appl. Anal. 2014, 2014, 458098. [Google Scholar] [CrossRef]
- Kikina, L.; Kikina, K. Fixed Point Theorems on Generalized Metric Spaces for Mappings in a Class of Almost φ-Contractions. Demonstr. Math. 2015, 48, 440–451. [Google Scholar] [CrossRef]
- Khamsi, M.; Hussain, N. KKM mappings in metric type spaces. Nonlinear Anal. Theory Methods Appl. 2010, 73, 3123–3129. [Google Scholar] [CrossRef]
- Branciari, A. A fixed point theorem for mappings satisfying a general contractive condition of integral type. Int. J. Math. Math. Sci. 2002, 29, 531–536. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvat-Marc, A.; Cufoian, M.; Mitre, A.; Taşcu, I. Fixed Point Theorems in Rectangular b-Metric Space Endowed with a Partial Order. Axioms 2023, 12, 1050. https://doi.org/10.3390/axioms12111050
Horvat-Marc A, Cufoian M, Mitre A, Taşcu I. Fixed Point Theorems in Rectangular b-Metric Space Endowed with a Partial Order. Axioms. 2023; 12(11):1050. https://doi.org/10.3390/axioms12111050
Chicago/Turabian StyleHorvat-Marc, Andrei, Mariana Cufoian, Adriana Mitre, and Ioana Taşcu. 2023. "Fixed Point Theorems in Rectangular b-Metric Space Endowed with a Partial Order" Axioms 12, no. 11: 1050. https://doi.org/10.3390/axioms12111050
APA StyleHorvat-Marc, A., Cufoian, M., Mitre, A., & Taşcu, I. (2023). Fixed Point Theorems in Rectangular b-Metric Space Endowed with a Partial Order. Axioms, 12(11), 1050. https://doi.org/10.3390/axioms12111050