Neighborhood Versions of Geometric–Arithmetic and Atom Bond Connectivity Indices of Some Popular Graphs and Their Properties
Abstract
:1. Introduction
2. Preliminaries
- (i)
- neighborhood first Zagreb index [27] is given by
- (ii)
- neighborhood hyper Zagreb index [27] is given by
- (iii)
- neighborhood second Zagreb index [27] is given by
- (iv)
- neighborhood forgotten topological index [27] is given by
- (v)
- neighborhood modified version of forgotten topological index [27] is given by
- (vi)
- neighborhood harmonic index [28] is given by
- (vii)
- neighborhood Randic index [28] is given by
- (viii)
- neighborhood inverse Randic index [28] is given by
3. Main Results
3.1. Bounds for Neighborhood Geometric–Arithmetic () Index of Graphs
3.2. Bounds for Neighborhood Atom Bond Connectivity Index of Graphs
- (i)
- If is a star graph, then .
- (ii)
- If is a regular, cycle, or complete graph, then .
- (iii)
- If is a pendant graph, then .
- (iv)
- If is an irregular graph, then .
- (v)
- If is any graph, then .
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wiener, H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947, 1, 17–20. [Google Scholar] [CrossRef]
- Randic, M. On Characterization of molecular branching. J. Am. Chem. Soc. 1975, 97, 6609–6615. [Google Scholar] [CrossRef]
- Li, X.; Shi, Y. A survey on the Randic index. MATCH Commun. Math. Comput. Chem. 2008, 59, 127–156. [Google Scholar]
- Zhou, B.; Luo, W. A note on general Randic index. Match 2009, 62, 155. [Google Scholar]
- Maallah, R.L.; Khalaf, A.J.M. Randic and General Randic Indcies of Unicyclic Graphs. Saudi J. Eng. Technol. 2017, 2, 274–279. [Google Scholar] [CrossRef]
- Gutman, I.; Trinajstić, N. Graph theory and molecular orbitals. In New Concepts II; Springer: Berlin/Heidelberg, Germany, 1973; pp. 49–93. [Google Scholar]
- Gutman, I.; Das, K.C. The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 2004, 50, 83–92. [Google Scholar]
- Gutman, I.; Rućić, B.; Trinajstić, N.; Wilcox, C.F., Jr. Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Chem. Phys. 1975, 62, 3399–3405. [Google Scholar] [CrossRef]
- Furtula, B.; Gutman, I. A forgotten topological index. J. Math. Chem. 2015, 53, 1184–1190. [Google Scholar] [CrossRef]
- Zhong, L. The harmonic index for graphs. Appl. Math. Lett. 2012, 25, 561–566. [Google Scholar] [CrossRef]
- Vukičević, D.; Furtula, B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 2009, 46, 1369–1376. [Google Scholar] [CrossRef]
- Estrada, E.; Torres, L.; Rodriguez, L.; Gutman, I. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. Indian J. Chem. 1998, 37, 849–855. [Google Scholar]
- Gutman, I.; Furtula, B.; Elphick, C. Three new/old vertex degree- based topological indices. MATCH Commun. Math. Comput. Chem. 2014, 72, 617–632. [Google Scholar]
- Granados, A.; Portilla, A.; Garcia, J.M.; Rodriguez, J.M.; Almira, J.M.S. Inequalities on the geometric-arithmetic index. Hacet. J. Math. Stat. 2021, 50, 778–794. [Google Scholar] [CrossRef]
- Asif, M.; Almohamedh, H.; Hussain, M.; Alhamed, K.M.; Almutairi, A.A.; Almotairi, S. An approach to the geometric-arithmetic index for graphs under transformations’ fact over pendent paths. Complexity 2021, 2021, 3745862. [Google Scholar] [CrossRef]
- Das, K.C. On geometric-arithmetic index of graphs. MATCH Commun. Math. Comput. Chem. 2010, 64, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Gutman, I. Degree based topological indices. Croat. Chem. Acta 2013, 86, 351–361. [Google Scholar] [CrossRef]
- Portilla, A.; Rodrıguez, J.M.; Sigaretta, J.M. Recent lower bounds for geometric-arithmetic index. Discret. Math. Lett. 2019, 1, 59–82. [Google Scholar]
- Rodrıguez, J.M.; Sigaretta, J.M. On the geometric–arithmetic index. MATCH Commun. Math. Comput. Chem. 2015, 74, 103–120. [Google Scholar]
- Stankov, S.; Matejić, M.; Milovanović, I.; Milovanović, E. Some mathematical properties of the geometric-arithmetic index/coindex of graphs. Filomat 2021, 35, 5045–5057. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhou, B.; Trinajstić, N. On geometric-arithmetic index. J. Math. Chem. 2010, 47, 833–841. [Google Scholar] [CrossRef]
- Ali, A.; Das, K.C.; Dimitrov, D.; Furtula, B. Atom–bond connectivity index of graphs: A review over extremal results and bounds. Discret. Math. Lett. 2021, 5, 68–93. [Google Scholar]
- Chaluvaraju, B.; Shaikh, A.B. Different versions of atom-bond connectivity indices of some molecular structures: Applied for the treatment and prevention of COVID-19. Polycycl. Aromat. Compd. 2021, 42, 3748–3761. [Google Scholar] [CrossRef]
- Das, K.C.; Elumalai, S.; Gutman, I. On ABC index of graphs. MATCH Commun. Math. Comput. Chem. 2017, 78, 459–468. [Google Scholar]
- Das, K.C. Atom-bond connectivity index of graphs. Discret. Appl. Math. 2010, 158, 1181–1188. [Google Scholar] [CrossRef]
- Zukia, W.N.N.N.W.; Hasnia, R.; Husina, N.H.M.; Dub, Z.; Raheemc, A. On the difference between geometric-arithmetic index and atom-bond connectivity index for trees. J. Math. Comput. Sci. 2021, 2, 49–58. [Google Scholar]
- Mondal, S.; De, N.; Pal, A. On some new neighborhood degree based indices. Acta Chem. Iasi 2019, 27, 31–46. [Google Scholar] [CrossRef]
- Mondal, S.; Dey, A.; De, N.; Pal, A. QSPR analysis of some novel neighbourhood degree-based topological descriptors. Complex Intell. Syst. 2021, 7, 977–996. [Google Scholar] [CrossRef]
- Chartrand, G.; Zhang, P. A First Course in Graph Theory; Courier Corporation: Mineola, NY, USA, 2013. [Google Scholar]
- Walis, W.D. A Beginner’s Guide to Graph Theory; Springer Science and Business Media: Birkhauser/Berlin, Germany, 2007. [Google Scholar]
- Cvetkovski, Z. Inequalities Theorems, Techniques and Selected Problems; Springer: Berlin/Heidelberg, Germany, 2010; Volume 107. [Google Scholar]
- Sedrakyan, H.; Sedrakyan, N. Algebraic Inequalities; Springer: New York, NY, USA, 2018. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abubakar, M.S.; Aremu, K.O.; Aphane, M. Neighborhood Versions of Geometric–Arithmetic and Atom Bond Connectivity Indices of Some Popular Graphs and Their Properties. Axioms 2022, 11, 487. https://doi.org/10.3390/axioms11090487
Abubakar MS, Aremu KO, Aphane M. Neighborhood Versions of Geometric–Arithmetic and Atom Bond Connectivity Indices of Some Popular Graphs and Their Properties. Axioms. 2022; 11(9):487. https://doi.org/10.3390/axioms11090487
Chicago/Turabian StyleAbubakar, Muhammad Shafii, Kazeem Olalekan Aremu, and Maggie Aphane. 2022. "Neighborhood Versions of Geometric–Arithmetic and Atom Bond Connectivity Indices of Some Popular Graphs and Their Properties" Axioms 11, no. 9: 487. https://doi.org/10.3390/axioms11090487
APA StyleAbubakar, M. S., Aremu, K. O., & Aphane, M. (2022). Neighborhood Versions of Geometric–Arithmetic and Atom Bond Connectivity Indices of Some Popular Graphs and Their Properties. Axioms, 11(9), 487. https://doi.org/10.3390/axioms11090487