Covariant Space-Time Line Elements in the Friedmann–Lemaitre–Robertson–Walker Geometry
Abstract
:1. Introduction
2. Results
2.1. Space-Time Line Element for a Particle at Rest in the FRW Metric
2.2. Generic Solution for the FRW Space-Time Line Element for a Moving Particle in the R Coordinate
2.3. Specific Solutions for the FRW Space-Time Line Element for a Moving Particle When Is the Dominant Term
2.4. Specific Solutions for the FRW Space-Time Line Element for a Moving Particle When Is the Dominant Term
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einstein, A. Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 49, 769–822. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Lewandoski, J. Background Independent Quantum Gravity: A Status Report. Class. Quant. Gravity 2004, 21, R53–R152. [Google Scholar] [CrossRef]
- Ozawa, M. Heisenberg’s original derivation of the uncertainty principle and its universally valid reformulations. Curr. Sci. 2015, 109, 2006–2016. [Google Scholar] [CrossRef] [Green Version]
- Werner, R.F.; Farrely, T. Uncertainty from Heisenberg to today. Found. Phys. 2019, 49, 460–491. [Google Scholar] [CrossRef] [Green Version]
- Rovelli, C. Loop Quantum Gravity. Living Rev. Relativ. 2008, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Aharony, O.; Gubser, S.S.; Maldacena, J.; Ooguri, H.; Oz, Y. Large N field theories, string theory and gravity. Phys. Rep. 2000, 323, 183–386. [Google Scholar] [CrossRef] [Green Version]
- Helesfai, G.; Bene, G. A numerical study of spectral properties of the area operator y loop quatum gravity. arXiv 2003, arXiv:gr-qc/0306124. [Google Scholar]
- Ashtekar, A.; Lewandoski, J. Quantum theory of geometry. I: Area operators. Class. Quant. Gravity 1997, 14, A55–A82. [Google Scholar] [CrossRef]
- Brunnemann, J.; Rideout, D. Properties of the Volume operators in Loop Quantum Gravity I: Results. Class. Quant. Gravity 2008, 25, 065001. [Google Scholar] [CrossRef]
- Gross, D.J.; Mende, P.F. String theory beyond the Planck scale. Nucl. Phys. B 1988, 303, 407–454. [Google Scholar] [CrossRef]
- Magueijo, J.; Smolin, L. String theories with deformed energy momentum relations, and a possible non-tachyonic bosonic string. Phys. Rev. D 2005, 71, 026010. [Google Scholar] [CrossRef] [Green Version]
- Casares, P.A.M. A review on Loop Quantum Gravity. arXiv 2018, arXiv:1808.01252. [Google Scholar]
- Burderi, L.; Sanna, A.; Di Salvo, T.; Amati, L.; Amelino-Camelia, G.; Branchesi, M.; Capozziello, S.; Coccia, E.; Colpi, M.; Costa, E.; et al. GrailQuest: Hunting for Atoms of Space and Time hidden in the wrinkle of Space-Time. arXiv 2020, arXiv:1911.02154v2. [Google Scholar] [CrossRef]
- Ellis, J.; Konoplich, R.; Mavromatos, N.E.; Nguyen, L.; Sakharov, A.S.; Sarkisyan-Grinbaum, E.K. Robust constraint on Lorentz violation using Fermi-LAT gamma-ray burst data. Phys. Rev. D 2019, 99, 083009. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.J.; Wu, X.F. A Further Test of Lorentz Violation from the Rest-frame Spectral Lags of Gamma-Ray Bursts. Astrophys. J. 2017, 851, 127. [Google Scholar] [CrossRef] [Green Version]
- Laurent, P.; Gotz, D.; Binetruy, P.; Covino, S.; Fernandez-Soto, A. Constraints on Lorentz Invariance Violation using INTEGRAL/IBIS observations of GRB041219A. Phys. Rev. D 2011, 83, 121301. [Google Scholar] [CrossRef] [Green Version]
- Maccione, L.; Liberati, S.; Celotti, A.; Kirk, J.G.; Ubertini, P. Gamma-ray polarization constraints on Planck scale violations of special relativity. Phys. Rev. D 2008, 78, 103003. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, T.; Liberati, S.; Mattingly, D. Lorentz violation at high energy: Concepts, phenomena and astrophysical constraints. Ann. Phys. 2006, 321, 150–196. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; Lambiase, G.; Scarpetta, G. Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 2000, 39, 15–22. [Google Scholar] [CrossRef]
- Das, S.; Vanegas, E.C. Phenomenological implications of the generalized uncertainty principle. Can. J. Phys. 2009, 87, 233–240. [Google Scholar] [CrossRef]
- Todorinov, V.; Bosso, P.; Das, S. Relativistic generalized uncertainty principle. Ann. Phys. 2019, 405, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Haghani, Z.; Harko, T. Effects of quantum metric fluctuations on the cosmological evolution in Friedmann-Lemaitre-Robertson-Walker geometries. Physics 2021, 3, 689–714. [Google Scholar] [CrossRef]
- Wheeler, J.A. On the nature of quantum geometrodynamics. Ann. Phys. 1957, 2, 604. [Google Scholar] [CrossRef]
- Dzhunushaliev, V.; Folomeev, V.; Kleihaus, B.; Kunz, J. Modified gravity from the quantum part of the metric. Eur. Phys. J. C 2014, 74, 2743. [Google Scholar] [CrossRef] [Green Version]
- Hossenfelder, S. Minimal length scale scenarios for quantum gravity. Living Rev. Relativ. 2013, 16, 2. [Google Scholar] [CrossRef] [Green Version]
- Hamber, H.W. Quantum Gravitation; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Kempf, A.; Mangano, G.; Mann, R.B. Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 1995, 52, 1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, F. Towards quantum mechanics on the curved cotangent bundle. arXiv 2022, arXiv:2112.06758v3. [Google Scholar] [CrossRef]
- Dzierzak, P.; Jezierski, J.; Malkiewicz, P.; Piechocki, W. The minimum length problem of loop quantum cosmology. Acta Phys. Pol. B 2010, 41, 717–726. [Google Scholar]
- Casadio, R.; Scardigli, F. Generalized Uncertainty Principle, Classical Mechanics, and General Relativity. Phys. Lett. B 2020, 807, 135558. [Google Scholar] [CrossRef]
- Mignemi, S. Classical and quantum mechanics of the nonrelativistic Snyder model in curved space. Class. Quant. Gravity 2012, 29, 215019. [Google Scholar] [CrossRef]
- Pramanik, S.; Ghosh, S. GUP-based and Snyder non-commutative algebras, relativistic particle models and deformed symmetries: A unified approach. Int. J. Mod. Phys. A 2013, 28, 1350131. [Google Scholar] [CrossRef] [Green Version]
- Chashchina, O.I.; Sen, A.; Silagadze, Z.K. On deformations of classical mechanics due to Planck-scale physics. Int. J. Mod. Phys. D 2020, 29, 2050070. [Google Scholar] [CrossRef]
- Maggiore, M. The algebraic structure of the generalized uncertainty principle. Phys. Lett. B 1993, 319, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Bosso, P. On the quasi-position representation in theories with a minimal length. Class. Quant. Gravity 2021, 38, 075021. [Google Scholar] [CrossRef]
- Wagner, F. Relativistic extended uncertainty principle from spacetime curvature. Phys. Rev. D 2022, 105, 025005. [Google Scholar] [CrossRef]
- Buoninfante, L.; Lambiase, G.; Mazumdar, A. Ghost-free infinite derivative quantum field theory. Nucl. Phys. B. 2019, 944, 114646. [Google Scholar] [CrossRef]
- Escors, D.; Kochan, G. Constraints on general relativity geodesics by a covariant geometric uncertainty principle. Physics 2021, 3, 790–798. [Google Scholar] [CrossRef]
- Lachieze-Rey, M.; Luminet, J.P. Cosmic tolopogy. Phys. Rep. 1995, 254, 135–214. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.; Grave, F. Catalogue of Spacetimes. arXiv 2010, arXiv:0904.4184v3. [Google Scholar]
- Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results: VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E. The problem of time in quantum gravity. arXiv 2012, arXiv:1009.2157v3. [Google Scholar] [CrossRef] [Green Version]
- Vucetich, H. Testing Loretnz invariance violation in quantum gravity theories. arXiv 2005, arXiv:gr-qc/0502093v1. [Google Scholar]
- Amelino-Camelia, G.; D’Amico, N.; Rosati, G.; Loret, N. In-vacuo-dispersion features for GRB neutrinos and photons. Nat. Astron. 2017, 1, 0139. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Ma, B.Q. Light speed variation from gamma-ray bursts. Astropart. Phys. 2016, 82, 72. [Google Scholar] [CrossRef] [Green Version]
- Amelino-Camelia, G. Doubly-special relativity: Facts, myths and some key open issues. Symmetry 2010, 2, 230. [Google Scholar] [CrossRef] [Green Version]
- Susskind, L.; Uglum, J. String physics and black holes. Nucl. Phys. B Proc. Suppl. 1996, 45BC, 115–134. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escors, D.; Kochan, G. Covariant Space-Time Line Elements in the Friedmann–Lemaitre–Robertson–Walker Geometry. Axioms 2022, 11, 310. https://doi.org/10.3390/axioms11070310
Escors D, Kochan G. Covariant Space-Time Line Elements in the Friedmann–Lemaitre–Robertson–Walker Geometry. Axioms. 2022; 11(7):310. https://doi.org/10.3390/axioms11070310
Chicago/Turabian StyleEscors, David, and Grazyna Kochan. 2022. "Covariant Space-Time Line Elements in the Friedmann–Lemaitre–Robertson–Walker Geometry" Axioms 11, no. 7: 310. https://doi.org/10.3390/axioms11070310
APA StyleEscors, D., & Kochan, G. (2022). Covariant Space-Time Line Elements in the Friedmann–Lemaitre–Robertson–Walker Geometry. Axioms, 11(7), 310. https://doi.org/10.3390/axioms11070310