A Note on the Reverse Order Law for g-Inverse of Operator Product
Abstract
:1. Introduction
2. A Set of Lemmas
- (1)
- ;
- (2)
- ;
- (3)
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Penrose, R. A Generalized Inverse for Matrix; Cambridge University Press: Cambridge, UK, 1955; Volume 51, pp. 406–413. [Google Scholar]
- Ben-Israel, A.; Greville, T.N.E. Generalized Inverse: Theory and Applications, 2nd ed.; Wiley-Interscience, 1974; Springer: New York, NY, USA, 2002. [Google Scholar]
- Wang, G.R.; Wei, Y.; Qiao, S. Generalized Inverses: Theory and Computations; Science Press: Beijing, China, 2004. [Google Scholar]
- Harte, R.E. Invertibility and Singularity for Bounded Linear Operators; Marcel Dekker: New York, NY, USA, 1988. [Google Scholar]
- Bouldin, R.H. The pseudo-inverse of a product. SIAM J. Appl. Math. 1973, 24, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Galperin, A.M.; Waksman, Z. On pseudoinverse of operator products. Linear Algebra Appl. 1980, 33, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Greville, T.N.E. Note on the generalized inverse of a matrix product. SIAM Rev. 1966, 8, 518–521. [Google Scholar] [CrossRef]
- Hartwig, R.E. The reverse order law revisited. Linear Algebra Appl. 1986, 76, 241–246. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.L.; Meyer, C.D. Generalized Inverse of Linear Transformations; Dover: New York, NY, USA, 1979. [Google Scholar]
- Cvetković-Ilić, D.S.; Wei, Y. Algebraic Properties of Generalized Inverses, Series: Developments in Mathematics; John Springer: Rochester, NY, USA, 2017; Volume 52. [Google Scholar]
- Rao, C.R.; Mitra, S.K. Generalized Inverses of Matrices and its Applications; Wiley: New York, NY, USA, 1971. [Google Scholar]
- Cvetković-IIić, D.S.; Nikolov, J. Reverse order laws for reflexive generalized inverse of operators. Linear Multilinear Algebra 2015, 63, 1167–1175. [Google Scholar]
- Pavlović, V.; Cvetković-Ilić, D.S. Applications of completions of operator matrices to reverse order law for {1}-inverses of operators on Hilbert spaces. Linear Algebra Appl. 2015, 484, 219–236. [Google Scholar]
- Tian, Y. Reverse order laws for the generalized inverse of multiple matrix products. Linear Algebra Appl. 1994, 211, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Wei, M. Equivalent conditions for generalized inverse of products. Linear Algebra Appl. 1997, 266, 347–363. [Google Scholar] [CrossRef] [Green Version]
- Pierro, D.R.A.; Wei, M. Reverse order laws for reflexive generalized inverse of products of matrices. Linear Algebra Appl. 1998, 277, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Wei, M. Reverse order laws for generalized inverse of multiple matrix products. Linear Algebra Appl. 1998, 293, 273–288. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Xiong, Z. The reverse order laws for {1,2,3}- and {1,2,4}-inverses of multiple matrix products. Linear Multilinear Algebra 2010, 58, 765–782. [Google Scholar] [CrossRef]
- Izumino, S. The product of operators with closed range and an extension of the reverse orderlaw. Tohoku Math. J. 1982, 34, 43–52. [Google Scholar] [CrossRef]
- Djordjević, D.S. Furthuer results on the reverse order law for generalized inverses. SIAM J. Matrix. Anal. Appl. 2007, 29, 1242–1246. [Google Scholar]
- Koliha, J.J.; Djordjević, D.S.; Cvetković-IIić, D. Moore-Penrose inverse in rings with involution. Linear Algebra Appl. 2007, 426, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Cvetković-IIić, D.; Harte, R. Reverse order laws in C*-algebras. Linear Algebra Appl. 2001, 434, 1388–1394. [Google Scholar]
- Caradus, S.R. Generalized Inverses and Operator Theory; Queen’s Paper in Pure and Applied Mathematics; Queen’s University: Kingston, ON, Canada, 1978. [Google Scholar]
- Liu, X.; Fu, S.; Yu, Y. An invariance property of operator products related to the mix-ed-type reverse order laws. Linear Multilinear Algebra 2016, 64, 885–896. [Google Scholar] [CrossRef]
- Nashed, M.Z. Inner, outer and generalized inverses in Banach and Hilbert spaces. Numer. Funct. Anal. Optim. 1987, 9, 261–325. [Google Scholar] [CrossRef]
- Radenković, J.N. Reverse order law for generalized inverses of multiple operator product. Linear Multilinear Algebra 2016, 64, 1266–1282. [Google Scholar]
- Sun, W.; Wei, Y. Inverse order rule for weighted generalized inverse. SIAM J. Matrix Anal. Appl. 1998, 19, 772–775. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Z.; Qin, Y. Mixed-type reverse order laws for the generalized inverses of operator products. Arab. J. Sci. Eng. 2011, 36, 475–486. [Google Scholar] [CrossRef]
- Xiong, Z.; Qin, Y. A note on the reverse order law for least square g-inverse of operator product. Linear Multilinear Algebra 2016, 64, 1404–1414. [Google Scholar] [CrossRef]
- Conway, J.B. A Course in Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1990. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Xiong, Z. A Note on the Reverse Order Law for g-Inverse of Operator Product. Axioms 2022, 11, 226. https://doi.org/10.3390/axioms11050226
Qin Y, Xiong Z. A Note on the Reverse Order Law for g-Inverse of Operator Product. Axioms. 2022; 11(5):226. https://doi.org/10.3390/axioms11050226
Chicago/Turabian StyleQin, Yingying, and Zhiping Xiong. 2022. "A Note on the Reverse Order Law for g-Inverse of Operator Product" Axioms 11, no. 5: 226. https://doi.org/10.3390/axioms11050226
APA StyleQin, Y., & Xiong, Z. (2022). A Note on the Reverse Order Law for g-Inverse of Operator Product. Axioms, 11(5), 226. https://doi.org/10.3390/axioms11050226