Next Article in Journal
Certain Geometric Properties of the Fox–Wright Functions
Previous Article in Journal
Local Grey Predictor Based on Cubic Polynomial Realization for Market Clearing Price Prediction
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Solvability for Some Classes of System of Non-Linear Integral Equations in Two Dimensions via Measure of Non-Compactness

1
Department of Applied Sciences and Humanities, NSUT Dwarka Campus, New Delhi 110075, India
2
Mathematics Discipline, PDPM-IIITDM, Jabalpur 482005, India
3
Department of Mechanical Engineering, College of Engineering, Qassim University, Buraydah 51452, Saudi Arabia
4
Department of Mathematics, Meerut College, Meerut 250001, India
*
Author to whom correspondence should be addressed.
Axioms 2022, 11(11), 628; https://doi.org/10.3390/axioms11110628
Submission received: 1 July 2022 / Revised: 6 October 2022 / Accepted: 4 November 2022 / Published: 9 November 2022

Abstract

:
In this paper, we present some results of coupled fixed points for the system of non-linear integral equations in Banach space. Our results enlarge the results of newer papers. Additionally, we prove the applicability of those results to the solvability of the system of non-linear integral equations. Finally, we give an example to validate the applicability of our results.

1. Introduction

The MNC is one of the usual famous and helpful ideas in non-linear analysis. This discussion was started by the fundamental article of Kuratowski in [1] and has given powerful tools for obtaining the solutions of a wide variety of integral equations and systems of integral equations. One of the most valuable results in the fixed point theory is due to G. Darbo [2]. Considerably, several scholars have presented generalizations of Darbo’s theorem with MNC and have been supported in solving the integral equations (for example, see [3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]). In this work, we used the technique of MNC and the generalization of Darbo’s fixed point theorem to the existence result of a system of non-linear integral equations in two variables in Banach space.
Assume that H is a real Banach space with the norm | | . | | . Let B ( x , σ ) be the closed ball with radius σ and centered at x. Let J be a non-empty subset of H, and J ¯ and ConvJ denote the closure and the convex closure of J, respectively. Let M H be the family of all non-empty and bounded subsets of H and N H be the subfamily consisting of all relatively compact subsets of H .
Definition 1
([20]). Let J M H and
ν ( J ) = inf ϵ > 0 : J = i = 1 n J i w i t h d i a m J i ϵ , i = 1 , . . . , n ,
where
d i a m J = sup { x 1 x 2 : x 1 , x 2 J } ,
ν ( J ) is called the Kuratowski MNC.
Definition 2
([20]). A mapping ν : M H R + is called the MNC in H if it meets the criteria listed below:
( i )
Ker ν = { J M H : ν ( J ) = 0 } is non-empty and Ker ν N H ,
( i i )
ν ( S ) ¯ = ν ( J ) ;
( i i i )
ν ( C o n v S ) = ν ( J ) ;
( i v )
ν ( λ S + ( 1 λ ) S 1 ) λ ν ( J ) + ( 1 λ ) ν ( J 1 ) for λ [ 0 , 1 ] for J , J 1 M H ,
( v )
If J i is a decreasing sequence of sets in M H such that lim i ν ( J i ) = 0 , then the intersection set J = i = 1 J i is non-empty;
( v i )
J J 1 ν ( J ) ν ( J 1 ) .
The family Ker ν is said to be the kernel of the MNC ν and intersection set J K e r ν . Since ν ( J ) ν ( J i ) for any i, we have ν ( J ) = 0 . By ( i ) , we obtain J K e r ν .
Definition 3
([21]). An element ( x 1 , x 2 ) J × J is called a CFP of a mapping T : J × J J if T ( x 1 , x 2 ) = x 1 and T ( x 2 , x 1 ) = x 2 .
Theorem 1
([20]). Suppose ν 1 , . . . , ν n is the MNC in Banach spaces H 1 , . . . , H n , respectively. Let F ( x 1 , . . . , x n ) = 0 and F : [ 0 , ) n [ 0 , ) be convex iff x i = 0 for i = 1 , . . . , n . Then,
ν ¯ ( J ) = F ( ν 1 ( J 1 ) , . . . , ν n ( J n ) )
defines an MNC in H 1 × . . . × H n . Denote by J i the natural projection of J into H i for each i.
Example 1
([5]). Assume ν is an MNC on H and F ( x 1 , x 2 ) = x 1 + x 2 for any ( x 1 , x 2 ) [ 0 , ) 2 . Then, we obtain that F is convex and F ( x 1 , x 2 ) = 0 iff x 1 = x 2 = 0 , so all the conditions of Theorem 1 are satisfied. Since ν ¯ ( J ) = ν ( J 1 ) + ν ( J 2 ) , define an MNC in H × H , where J 1 , J 2 are the natural projections of J into H .
Theorem 2
(Schauder [5]). Let Γ be a convex closed subset of H . Then, each continuous, compact map W : Γ Γ possesses at least one fixed point.
Theorem 3
(Darbo [22]). Let the non-empty subset Γ of H be convex, bounded and closed, and let W : Γ Γ be a continuous mapping. Suppose that there ∃ a constant 0 k < 1 such that
ν ( W ( J ) ) k ν ( J ) ,
for any J Γ . Then, W has a fixed point.
Lemma 1
([23]). Let χ : R + R + be a non-decreasing and upper semi-continuous function. Then, the following conditions are equivalent:
( i )
lim n χ n ( ϱ ) = 0 , ϱ > 0 .
( i i )
χ ( ϱ ) < ϱ , ϱ > 0 .

2. Main Results

In this section, let χ ^ be the class of all functions χ : R + 2 R + and satisfy the following conditions:
( i ) χ is a non-decreasing continuous function on R + 2 .
( i i ) lim n θ n ( ϱ ) = 0 for every ϱ > 0 , where θ ( ϱ ) = χ ( ϱ , ϱ ) .
( i i i ) 1 2 χ ( ϱ 1 , τ 1 ) + 1 2 χ ( ϱ 2 , τ 2 ) χ ( ϱ 1 + ϱ 2 2 , τ 1 + τ 2 2 ) for all ϱ 1 , ϱ 2 , τ 1 , τ 2 R + .
  • For example, χ ( ϱ , τ ) = l n ( 1 + ϱ + τ 2 ) χ ^ .
Theorem 4
([8]). Let Γ be a non-empty, bounded, convex and closed subset of H , and let the continuous function W : Γ × Γ Γ satisfy
ν ¯ ( W ( J ) ) χ ( ν ¯ ( J ) , ν ¯ ( J ) ) ,
for an arbitrary non-empty subset J Γ × Γ , where ν ¯ is defined in Example 1 and χ χ ^ . Then, W has a CFP in Γ × Γ .
Theorem 5
([8]). Let the non-empty subset Γ of H be convex, bounded and closed, and ν be an arbitrary MNC. Further, let continuous function W : Γ × Γ Γ satisfy
ν ¯ ( W ( J 1 × J 2 ) ) χ ( ν ¯ ( J 1 ) , ν ¯ ( J 2 ) )
for non-empty subsets J 1 , J 2 Γ , where χ χ ^ . Then, W has a CFP.
For CFP theorems and its application in integral equations, readers can see [24].
Now, let H = B C ( R + , R + ) be a Banach space consisting of all real valued continuous bounded functions on R + 2 with max norm
x = m a x { | x ( ϱ , τ ) | : ϱ , τ R + } .
Let J be a fixed, non-empty and bounded subset of H = B C ( R + , R + ) and U > 0 . For given ϵ > 0 and x J , the modulus of continuity of the function x on the bounded-closed interval [0, U] is denoted by ω U ( x , ϵ ) and defined as
ω U ( x , ϵ ) = s u p { | x ( ϱ , τ ) x ( ϱ ^ , τ ^ ) | : ϱ , τ , ϱ ^ , τ ^ [ 0 , U ] , | ϱ ϱ ^ | ϵ , | τ τ ^ | ϵ } .
Next, we have
ω U ( J , ϵ ) = s u p { ω U ( x , ϵ ) : x J } ,
ω 0 U ( J ) = lim ϵ 0 ω U ( J , ϵ ) ,
and
ω 0 ( J ) = lim U ω 0 U ( J ) .
Now, for fixed numbers ϱ , τ R + , let us define
J ( ϱ , τ ) = { x ( ϱ , τ ) : x J } ,
d i a m J ( ϱ , τ ) = s u p { | x 1 ( ϱ , τ ) x 2 ( ϱ , τ ) | : x 1 , x 2 J } .
Finally,
ν ( J ) = ω 0 ( J ) + lim ϱ , τ s u p d i a m ( J ( ϱ , τ ) )
The function ν is an MNC in H.
Now, we will analyze the existence of a solution for the non-linear functional integral equations system
{ x ( ϱ , τ ) = C ( ϱ , τ ) + g ( ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) ) + P ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η y ( ϱ , τ ) = C ( ϱ , τ ) + g ( ϱ , τ , y ( ϱ , τ ) , x ( ϱ , τ ) ) + P ϱ , τ , y ( ϱ , τ ) , x ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , y ( η , μ ) , x ( η , μ ) ) d μ d η } .
Suppose that
( 1 )
C : R + 2 R is continuous with C ^ = s u p { | C ( ϱ , τ ) | : ϱ , τ R + } .
( 2 )
a , b : R + R + are continuous.
( 3 )
P : R + 2 × R 3 R and g : R + 2 × R 2 R are continuous and ∃ a θ χ ^ , and a continuous non-decreasing function θ ^ : R + R such that θ ^ ( 0 ) = 0 and
| g ( ϱ , τ , x , y ) g ( ϱ , τ , x ^ , y ^ ) | 1 2 θ ( | x x ^ | , | y y ^ | ) ,
| P ( ϱ , τ , x , y , z ) P ( ϱ , τ , x ^ , y ^ , z ^ ) | 1 2 θ ( | x x ^ | , | y y ^ | ) + θ ^ ( | z z ^ | ) ,
for any ϱ , τ 0 and each x , y , z , x ^ , y ^ , z ^ R .
( 4 )
P ( ϱ , τ , 0 , 0 , 0 ) and g ( ϱ , τ , 0 , 0 ) are bounded on R + , i.e.,
G 1 = s u p { | P ( ϱ , τ , 0 , 0 , 0 ) | : ϱ , τ R + } < .
G 2 = s u p { | g ( ϱ , τ , 0 , 0 , ) | : ϱ , τ , R + } < .
( 5 )
h : R + 4 × R 2 R is a continuous function such that
G = s u p 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η : ϱ , τ , η , μ R + , x , y H
is finite. Moreover,
lim ϱ , τ 0 a ( ϱ ) 0 b ( τ ) | h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , x ^ ( η , μ ) , y ^ ( η , μ ) ) | d μ d η = 0
for each x , y , x ^ , y ^ H .
( 6 )
There ∃ a positive solution ρ of the inequality
C ^ + θ ( σ , σ ) + G 1 + G 2 + θ ^ ( G ) σ .
Theorem 6
With the assumptions ( 1 ) ( 6 ) Equation (1) has at least one solution in H × H .
Proof. 
Let W : H × H H be defined as
W ( x , y ) ( ϱ , τ ) = C ( ϱ , τ ) + g ( ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) ) + P ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η .
Moreover, the space H × H is a Banach space with the usual norm ( x , y ) H × H = x H + y H , where x H = s u p { | x ( ϱ , τ ) | : ϱ , τ 0 } , y H = s u p { | y ( ϱ , τ ) | : ϱ , τ 0 } . It is clear that W ( x , y ) ( ϱ , τ ) is continuous for each x , y H . Let B ρ = { x H : x H ρ } . Then,
| W ( x , y ) ( ϱ , τ ) | | C ( ϱ , τ ) | + | g ( ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) ) g ( ϱ , τ , 0 , 0 ) | + P ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η P ( ϱ , τ , 0 , 0 , 0 ) + | P ( ϱ , τ , 0 , 0 , 0 ) | + | g ( ϱ , τ , 0 , 0 ) | C ^ + 1 2 θ ( | x ( ϱ , τ ) | , | y ( ϱ , τ ) | ) + 1 2 θ ( | x ( ϱ , τ ) | , | y ( ϱ , τ ) | ) + θ ^ 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η + G 1 + G 2 C ^ + θ ( | x ( ϱ , τ ) | , | y ( ϱ , τ ) | ) + θ ^ 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η + G 1 + G 2 C ^ + θ ( x , y ) + θ ^ ( G ) + G 1 + G 2 .
Thus, W is well defined and by ( 6 ) we obtain W ( B ρ × B ρ ) B ρ .
Now, it is shown that W is continuous on B ρ × B ρ . Let ( x , y ) , ( q , p ) B ρ × B ρ with
( x , y ) ( q , p ) | | H × H < ϵ 2 .
Now, we obtain
| W ( x , y ) ( ϱ , τ ) W ( q , p ) ( ϱ , τ ) | | g ( ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) ) g ( ϱ , τ , q ( ϱ , τ ) , p ( ϱ , τ ) ) | + | P ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η P η , μ , q ( η , μ ) , p ( η , μ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , q ( η , μ ) , p ( η , μ ) ) d μ d η | 1 2 θ ( | x ( ϱ , τ ) q ( ϱ , τ ) | , | y ( ϱ , τ ) p ( ϱ , τ ) | ) + 1 2 θ ( | x ( ϱ , τ ) q ( ϱ , τ ) | , | y ( ϱ , τ ) p ( ϱ , τ ) | ) + θ ^ | 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , q ( η , μ ) , p ( η , μ ) ) d μ d η | θ ( x q , y p ) + θ ^ | 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , q ( η , μ ) , p ( η , μ ) ) d μ d η | .
By ( 3 ) and ( 5 ) , for ϵ > 0 U > 0 such that ϱ , τ > U and
θ ^ | 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , q ( η , μ ) , p ( η , μ ) ) d μ d η | ϵ 2
for each x , y , q , p H .
Case 1 : If ϱ , τ > U , then
| W ( x , y ) ( ϱ , τ ) W ( q , v ) ( ϱ , τ ) | θ ϵ 2 , ϵ 2 + ϵ 2 < ϵ 2 + ϵ 2 = ϵ .
Case 2 : If ϱ , τ [ 0 , U ] , then
| W ( x , y ) ( ϱ , τ ) W ( q , v ) ( ϱ , τ ) | θ ϵ 2 , ϵ 2 + θ ^ ( a ^ b ^ w ^ ) < ϵ 2 + θ ^ ( a ^ b ^ w ^ ) ,
where a ^ = s u p { a ( ϱ ) : ϱ [ 0 , U ] } , b ^ = s u p { b ( τ ) : τ [ 0 , U ] } and
w ^ = s u p { | h ( ϱ , τ , η , μ , x , y ) h ( ϱ , τ , η , μ , q , p ) | : ϱ , τ [ 0 , U ] , η [ 0 , a ^ ] , μ [ 0 , b ^ ] , x , y , q , p [ ρ , ρ ] , ( x , y ) ( q , p ) | | H × H < ϵ 2 } .
Using the continuity of h on [ 0 , U ] × [ 0 , U ] × [ 0 , a ^ ] × [ 0 , b ^ ] × [ ρ , ρ ] × [ ρ , ρ ] , we obtain w ^ 0 as ϵ 0 i.e., since ϵ 0 gives a ^ b ^ w ^ 0 , so θ ^ ( a ^ b ^ w ¯ ) 0 . Therefore, W is a continuous mapping from B ρ × B ρ into B ρ . Now, we prove that W satisfies the condition of the Theorem . Let U , ϵ R + and J 1 , J 2 be arbitrary non-empty subsets of B ρ and suppose ϱ 1 , ϱ 2 , τ 1 , τ 2 [ 0 , U ] , such that | ϱ 1 ϱ 2 | ϵ , | τ 1 τ 2 | ϵ .
Now, we can suppose that a ( ϱ 1 ) < a ( ϱ 2 ) and b ( τ 1 ) < b ( τ 2 ) . Then,
| W ( x , y ) ( ϱ 2 , τ 2 ) W ( x , y ) ( ϱ 1 , τ 1 ) | | C ( ϱ 2 , τ 2 ) C ( ϱ 1 , τ 1 ) | + | g ( ϱ 2 , τ 2 , x ( ϱ 2 , τ 2 ) , y ( ϱ 2 , τ 2 ) ) g ( ϱ 2 , τ 2 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) ) | + | g ( ϱ 2 , τ 2 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) ) g ( ϱ 1 , τ 1 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) ) | + | P ϱ 2 , τ 2 , x ( ϱ 2 , τ 2 ) , y ( ϱ 2 , τ 2 ) , 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 2 , τ 2 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η P ϱ 2 , τ 2 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) , 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 2 , τ 2 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η | + | P ϱ 2 , τ 2 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) , 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 2 , τ 2 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η P ϱ 1 , τ 1 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) , 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 2 , τ 2 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η | + | P ϱ 1 , τ 1 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) , 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 2 , τ 2 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η P ϱ 1 , τ 1 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) , 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η | + | P ϱ 1 , τ 1 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) , 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η P ϱ 1 , τ 1 , x ( ϱ 1 , τ 1 ) , y ( ϱ 1 , τ 1 ) , 0 a ( ϱ 1 ) 0 b ( τ 1 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η |
ω U ( C , ϵ ) + 1 2 θ ( | x ( ϱ 2 , τ 2 ) x ( ϱ 1 , τ 1 ) | , | y ( ϱ 2 , τ 2 ) y ( ϱ 1 , τ 1 ) | ) + ω ρ U ( g , ϵ ) + 1 2 θ ( | x ( ϱ 2 , τ 2 ) x ( ϱ 1 , τ 1 ) | , | y ( ϱ 2 , τ 2 ) y ( ϱ 1 , τ 1 ) | ) + ω ρ U ( P , ϵ ) + θ ^ | 0 a ( ϱ 2 ) 0 b ( τ 2 ) ( h ( ϱ 2 , τ 2 , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) ) d μ d η | + θ ^ ( | 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η 0 a ( ϱ 1 ) 0 b ( τ 1 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η | ) ω U ( C , ϵ ) + ω ρ U ( g , ϵ ) + θ ( ω U ( x , ϵ ) , ω U ( y , ϵ ) ) + ω ρ U ( P , ϵ ) + θ ^ ( a ^ b ^ ω ρ U ( h , ϵ ) ) + θ ^ | 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η 0 a ( ϱ 1 ) 0 b ( τ 1 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η | ,
where
ω U ( C , ϵ ) = s u p { | C ( ϱ 2 , τ 2 ) C ( ϱ 2 , τ 2 ) | : ϱ 1 , ϱ 2 , τ 1 , τ 2 [ 0 , U ] , | ϱ 1 ϱ 2 | ϵ , | τ 1 τ 2 | ϵ } ,
ω ρ U ( g , ϵ ) = s u p { | g ( ϱ 2 , τ 2 , x , y ) g ( ϱ 1 , τ 1 , x , y ) | : ϱ 1 , ϱ 2 , τ 1 , τ 2 [ 0 , U ] , | ϱ 1 ϱ 2 | ϵ , | τ 1 τ 2 | ϵ , x , y [ ρ , ρ ] } ,
ω U ( x , ϵ ) = s u p { | x ( ϱ 2 , τ 2 ) x ( ϱ 1 , τ 1 ) | : ϱ 1 , ϱ 2 , τ 1 , τ 2 [ 0 , U ] , | ϱ 1 ϱ 2 | ϵ , | τ 1 τ 2 | ϵ } ,
ω U ( y , ϵ ) = s u p { | y ( ϱ 2 , τ 2 ) y ( ϱ 1 , τ 1 ) | : ϱ 1 , ϱ 2 , τ 1 , τ 2 [ 0 , U ] , | ϱ 1 ϱ 2 | ϵ , | τ 1 τ 2 | ϵ } ,
G = a ^ b ^ s u p { | h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) | : ϱ , τ [ 0 , U ] , η [ 0 , a ^ ] , μ [ 0 , b ^ ] , x , y [ ρ , ρ ] } ,
ω ρ U ( P , ϵ ) = s u p { | P ( ϱ 2 , τ 2 , x , y , z ) P ( ϱ 1 , τ 1 , x , y , z ) | : ϱ 1 , ϱ 2 , τ 1 , τ 2 [ 0 , U ] , | ϱ 1 ϱ 2 | ϵ ,
| τ 1 τ 2 | ϵ , x , y [ ρ , ρ ] , z [ G , G ] } ,
ω ρ U ( h , ϵ ) = s u p { | h ( ϱ 2 , τ 2 , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) : ϱ 1 , ϱ 2 , μ 1 , μ 2 [ 0 , U ] ,
| ϱ 1 ϱ 2 | ϵ , | τ 1 τ 2 | ϵ , x , y [ ρ , ρ ] , η [ 0 , a ^ ] , μ [ 0 , b ^ ] } .
We know that ( x , y ) is an arbitrary element of J 1 × J 2 , then
ω U ( W ( J 1 × J 2 ) , ϵ ) ω U ( C , ϵ ) + ω ρ U ( g , ϵ ) + θ ( ω U ( x , ϵ ) , ω U ( y , ϵ ) + ω ρ U ( P , ϵ ) + θ ^ ( a ^ b ^ ω ρ U ( h , ϵ ) ) + θ ^ ( | 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η 0 a ( ϱ 1 ) 0 b ( τ 1 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η | ) .
From uniform continuity of g on [ 0 , U ] × [ 0 , U ] × [ ρ , ρ ] × [ ρ , ρ ] , P on [ 0 , U ] × [ 0 , U ] × [ ρ , ρ ] × [ ρ , ρ ] × [ G , G ] , and h on [ 0 , U ] × [ 0 , U ] × [ 0 , a ^ ] × [ 0 , b ^ ] × [ ρ , ρ ] × [ ρ , ρ ] , for ϵ 0 , we obtain ω U ( C , ϵ ) 0 , ω ρ U ( g , ϵ ) 0 , ω ρ U ( P , ϵ ) 0 and ω ρ U ( h , ϵ ) ) 0 .
Again, by uniform continuity of a and b on [ 0 , U ] and ϵ 0 , we have a ( ϱ 2 ) a ( ϱ 1 ) and b ( τ 2 ) b ( τ 1 ) . Then,
| 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η 0 a ( ϱ 1 ) 0 b ( τ 1 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η | 0 ,
which gives
θ ^ ( | 0 a ( ϱ 2 ) 0 b ( τ 2 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η 0 a ( ϱ 1 ) 0 b ( τ 1 ) h ( ϱ 1 , τ 1 , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η | ) 0 .
Apply the limit as ϵ 0 , then
ω 0 U ( W ( J 1 × J 2 ) ) θ ( ω 0 U ( J 1 ) , ω 0 U ( J 2 ) ) .
As U , we obtain
ω 0 ( W ( J 1 × J 2 ) ) θ ( ω 0 ( J 1 ) , ω 0 ( J 2 ) ) .
For arbitrary ( x , y ) , ( q , p ) J 1 × J 2 and ϱ , τ R + , we have
| W ( x , y ) ( ϱ , τ ) W ( q , p ) ( ϱ , τ ) | | h ( ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) ) h ( ϱ , τ , q ( ϱ , τ ) , p ( ϱ , τ ) ) | + | P ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η P ϱ , τ , q ( ϱ , τ ) , p ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , q ( η , μ ) , p ( η , μ ) ) d μ d η | 1 2 θ ( | x ( ϱ , τ ) q ( ϱ , τ ) | , | y ( ϱ , τ ) p ( ϱ , τ ) | ) + 1 2 θ ^ ( | x ( ϱ , τ ) q ( ϱ , τ ) | , | y ( ϱ , τ ) p ( ϱ , τ ) | ) + θ ^ | 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , q ( η , μ ) , p ( η , μ ) ) d μ d η | ϱ ( d i a m ( J 1 ( ϱ , τ ) , d i a m ( J 2 ( ϱ , τ ) ) + θ ^ | 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , q ( η , μ ) , p ( η , μ ) ) h ( ϱ , τ , η , μ , q ( η , μ ) , p ( η , μ ) ) d μ d η | .
Since ( x , y ) , ( q , p ) and ( ϱ , τ ) are arbitrary,
d i a m W ( J 1 × J 2 ) ( ϱ , τ ) ϱ ( d i a m ( J 1 ( ϱ , τ ) , d i a m ( J 2 ( ϱ , τ ) ) + θ ^ | 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , q ( η , μ ) , p ( η , μ ) ) d μ d η | .
As ϱ , τ , by ( 5 )
lim ϱ , τ s u p d i a m W ( J 1 × J 2 ) ( ϱ , τ ) θ lim ϱ , τ s u p d i a m ( J 1 ( ϱ , τ ) ) , lim ϱ , τ s u p d i a m ( J 2 ( ϱ , τ ) ) .
From 3 and 4, we obtain
ω 0 ( W ( J 1 × J 2 ) ) + lim ϱ , τ s u p d i a m W ( J 1 × J 2 ) ( ϱ , τ ) θ ( ω 0 ( J 1 ) , ω 0 ( J 2 ) ) + θ lim ϱ , τ s u p d i a m ( J 1 ( ϱ , τ ) ) , lim ϱ , τ s u p d i a m ( J 2 ( ϱ , τ ) )
2 ν w 0 ( J 1 ) + lim ϱ , τ s u p d i a m ( J 1 ( ϱ , τ ) ) 2 , w 0 ( J 2 ) ) + lim ϱ , τ s u p d i a m ( J 2 ( ϱ , τ ) ) 2 .
Therefore,
1 2 ν ( W ( J 1 × J 2 ) ) θ ν ( J 1 ) 2 , ν ( J 2 ) 2 .
Putting ν = 1 2 ν 1 , we have
ν 1 ( W ( J 1 × J 2 ) ) θ ν ( J 1 ) , ν ( J 2 ) .
By Theorem 5, J has a CFP in H × H .
Corollary 1
([8]). Let
( C 1 )
a , b : R + R + are continuous.
( C 2 )
P : R + 2 × R 3 R is continuous and a function θ χ ^ , and a continuous non-decreasing function θ ^ : R + R with θ ^ ( 0 ) = 0 such that
| P ( ϱ , τ , x , y , z ) P ( ϱ , τ , x ^ , y ^ , z ^ ) | θ ( | x x ^ | , | y y ^ | ) + θ ^ ( | z z ^ | ) ,
for each ϱ , τ 0 and for every x , y , z , x ^ , y ^ , z ^ H .
( C 3 )
P ( ϱ , τ , 0 , 0 , 0 ) is bounded, i.e.,
G 1 = s u p { | P ( ϱ , τ , 0 , 0 , 0 ) | : ϱ , τ R + } < .
( C 4 )
h : R + 4 × R 2 R is a continuous function such that the constant
G = s u p 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η : ϱ , τ , η , μ R + , x , y H
is finite. Moreover,
lim ϱ , τ 0 a ( ϱ ) 0 b ( τ ) | h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , x ^ ( η , μ ) , y ^ ( η , μ ) ) | d μ d η = 0
for all x , y , x ^ , y ^ H .
( C 5 )
a positive solution ρ of the inequality
θ ( σ , σ ) + C ^ + θ ^ ( G ) σ .
If C ( ϱ , τ ) = 0 and g ( ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) ) = 0 , then Equation (1) has the following form
{ x ( ϱ , τ ) = P ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η y ( ϱ , τ ) = P ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η } .
By assumptions ( C 1 ) ( C 5 ) , Equation (5) has at least one solution in H × H [8].
Example 2.
Consider the SIE
x ( ϱ , τ ) = 1 7 e ( ϱ 2 + τ 2 ) + ϱ 4 6 ( 1 + ϱ 4 ) + 1 4 e ( ϱ 2 + τ 2 ) + ϱ 2 2 ( 1 + ϱ 4 ) ln ( 1 + | x ( ϱ , τ ) | ) + 2 ϱ 2 2 + 6 ϱ 4 + 1 12 e ( ϱ 2 ) ln ( 1 + | y ( ϱ , τ ) | ) + 1 14 e ( ϱ 4 + τ 4 ) + s i n 0 ϱ 0 τ s i n 2 ( 1 + 2 η 2 y ( η , μ ) ) + c o s ( μ 3 x ( η , μ ) ) d μ d η e ϱ 2 τ 2 , y ( ϱ , τ ) = 1 7 e ( ϱ 2 + τ 2 ) + ϱ 3 + τ 3 3 ( 1 + ϱ 3 ) ( 1 + τ 3 ) + 1 4 e ( ϱ 2 + τ 2 ) + ϱ 2 2 ( 1 + ϱ 4 ) ln ( 1 + | y ( ϱ , τ ) | ) + 2 ϱ 2 2 + 6 ϱ 4 + 1 12 e ( ϱ 2 ) ln ( 1 + | x ( ϱ , τ ) | ) + 1 14 e ( ϱ 4 + τ 4 ) + s i n 0 ϱ 0 τ s i n 2 ( 1 + 2 η 2 x ( η , μ ) ) + c o s ( ϱ 3 y ( η , μ ) ) d μ d η e ϱ 2 τ 2 .
Here, Equation (6) is a particular case of Equation (1) with
C ( ϱ , τ ) = 1 7 e ( ϱ 2 + τ 2 ) ,
g ( u , v , x , y ) = u 4 6 ( 1 + u 4 ) + 1 12 e ( u 2 + v 2 ) ln ( 1 + | x ( u , v ) | ) + 2 ϱ 2 2 + 6 ϱ 4 ln ( 1 + | y ( ϱ , τ ) | ) ,
P ( ϱ , τ , x , y , z ) = ϱ 2 2 ( 1 + ϱ 4 ) ln ( 1 + | x ( ϱ , τ ) | ) + 1 12 e ( ϱ 2 ) ln ( 1 + | y ( ϱ , τ ) | ) + 1 14 e ( ϱ 4 + τ 4 ) + s i n ( z ) ,
h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) = s i n 2 ( 1 + 2 η 2 x ( η , μ ) ) + c o s ( μ 3 y ( η , μ ) ) e ϱ 2 τ 2 ,
θ ( ϱ , τ ) = ln 1 + ϱ + τ 2 , a ( ϱ ) = ϱ , b ( τ ) = τ , θ ^ ( ϱ ) = ϱ .
Based on these values, the operator W is defined as follows:
W ( x , y ) ( ϱ , τ ) = C ( ϱ , τ ) + g ( ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) ) + P ϱ , τ , x ( ϱ , τ ) , y ( ϱ , τ ) , 0 a ( ϱ ) 0 b ( τ ) h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η .
By the similar argument as that used in Theorem 6, we can prove that W is continuous on H × H .
Now, we show that conditions of Theorem 6 are holding for SIE (6).
S t e p ( 1 ) : C is continuous and bounded. We have that | C ( ϱ , τ ) | = | 1 7 e ( ϱ 2 + τ 2 ) | is bounded for ϱ , τ R + and C ^ = 1 7 .
S t e p ( 2 ) : a , b , g , P are continuous, | g ( ϱ , τ , 0 , 0 ) | = ϱ 4 6 ( 1 + ϱ 4 ) is bounded for ϱ , τ R + and G 1 = 1 6 . Further, | P ( ϱ , τ , 0 , 0 , 0 ) | = 1 14 e ( ϱ 4 + τ 4 ) is bounded for ϱ , τ R + and G 2 = 1 14 .
S t e p ( 3 ) : Suppose ϱ , τ R + and x , y , z , x ^ , y ^ , z ^ H with | | x | | | | x ^ | | , | | y | | | | y ^ | | . By the Mean Value Theorem for s i n ( z ) and ln 1 + ϱ + τ 2 χ ^ , we obtain
| g ( ϱ , τ , x , y ) g ( ϱ , τ , x ^ , y ^ ) | 1 12 e ( ϱ 2 + τ 2 ) | ln ( 1 + | | x | | ) l n ( 1 + | | x | | ^ ) | + 2 ϱ 2 2 + 6 ϱ 4 | ln ( 1 + | | y | | ) ln ( 1 + | | y | | ^ ) | 1 12 e ( ϱ 2 + τ 2 ) | ln 1 + | | x | | 1 + | | x | | ^ | + 2 ϱ 2 2 + 6 ϱ 4 | ln 1 + | | y | | 1 + | | y | | ^ | 1 4 | ln 1 + | | x | | 1 + | | x | | ^ | + 1 4 | ln 1 + | | y | | 1 + | | y | | ^ | 1 4 | ln 1 + | | x | | | | x | | ^ 1 + | | x | | ^ | + 1 4 | ln 1 + | | y | | | | y | | ^ 1 + | | y | | ^ | 1 4 ln ( 1 + | | x x ^ | | ) + 1 4 ln ( 1 + | | y y ^ | | ) 1 2 ln 1 + | | x x ^ | | + | | y y ^ | | 2 = 1 2 θ ( | | x x ^ | | , | | y y ^ | | ) .
Again,
| P ( ϱ , τ , x , y , z ) P ( ϱ , τ , x ^ , y ^ , z ^ ) | ϱ 2 2 ( 1 + ϱ 4 ) | ln ( 1 + | | x | | ) ln ( 1 + | | x | | ^ ) | + 1 12 e ( ϱ 2 ) | ln ( 1 + | | y | | ) ln ( 1 + | | y | | ^ ) | + | | s i n z s i n z ^ | | ϱ 2 2 ( 1 + ϱ 4 ) | ln 1 + | | x | | 1 + | | x | | ^ | + 1 12 e ( ϱ 2 ) | ln 1 + | | y | | 1 + | | y | | ^ | + | | z z ^ | | 1 4 | ln 1 + | | x | | 1 + | | x | | ^ | + 1 4 | ln 1 + | | y | | 1 + | | y | | ^ | + | | z z ^ | | 1 4 | ln 1 + | | x | | | | x | | ^ 1 + | | x | | ^ | + 1 4 | ln 1 + | | y | | | | y | | ^ 1 + | | y | | ^ | + | | z z ^ | | 1 4 ln ( 1 + | | x x ^ | | ) + 1 4 ln ( 1 + | | y y ^ | | ) + | | z z ^ | | 1 2 ln 1 + | | x x ^ | | + | | y y ^ | | 2 + | | z z ^ | | = 1 2 θ ( | | x x ^ | | , | | y y ^ | | ) + η ( | | z z ^ | | ) .
S t e p ( 4 ) : Since h is continuous, for every ϱ , τ , η , μ R + , and x , y , x ^ , y ^ H , we obtain
| h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , x ^ ( η , μ ) , y ^ ( η , μ ) ) | 4 e ϱ 2 τ 2 ,
0 ϱ 0 μ | h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , x ^ ( η , μ ) , y ^ ( η , μ ) ) | d μ d η 4 ϱ τ e ϱ 2 τ 2 ,
lim ϱ , τ 0 a ( ϱ ) 0 b ( τ ) | h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) h ( ϱ , τ , η , μ , x ^ ( η , μ ) , y ^ ( η , μ ) ) | d μ d η lim ϱ , τ 4 ϱ τ e ϱ 2 τ 2 = 0
for every x , x ^ , y , y ^ H . Moreover,
| h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) | 2 e ϱ 2 τ 2 .
Additionally,
0 ϱ 0 τ | h ( ϱ , τ , η , μ , x ( η , μ ) , y ( η , μ ) ) d μ d η | 2 ϱ τ e ϱ 2 τ 2 ,
for any ϱ , τ , η , μ R + . Thus,
G = s u p 2 ϱ τ e ϱ 2 τ 2 : ϱ , τ 0 = 2 e = 0.85776 .
S t e p ( 5 ) : Put all the value of C ^ , G 1 , G 2 , θ and θ ^ in the inequality ( 6 ) . Then,
16 42 + ln ( 1 + σ ) + 0.85776 σ .
For σ 3 , we have
σ 16 42 ln ( 1 + σ ) 0.85776 > 0 .
Thus, ρ = 3 . Hence, all the estimates of the Theorem are satisfied. So, Equation (6) has a solution in space H × H .

3. Conclusions

Various generalizations of DFPT are available. Some writers have formed generalizations via MNC. Many other writers have extended DFPT by modifying the domain of mappings that holds a fixed point. In the present article, we utilized contractions to prove that a mapping defined on a non-empty, bounded, closed and convex subset of a given Banach space contains at least one fixed point. We establish the existence result for a SNLIEs in two dimensions.

Author Contributions

All the authors have equal contributions to the preparation of the article. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No data were used to support this study.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Kuratowski, K. Sur les espaces complets. Fund. Math. 1930, 5, 301–309. [Google Scholar] [CrossRef] [Green Version]
  2. Darbo’s, G. Punti uniti in trasformazioni a codomio non compatto. Rend. Del Semin. Mat. Della Univ. Padova 1955, 24, 84–92. [Google Scholar]
  3. Agarwal, R.P.; Regan, D.O. Fixed Point Theory and Applications; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
  4. Aghajani, A.; Allahyari, R.; Mursaleen, M. A generalization of Darbo theorem with application to the solvability of system of integral equations. J. Comput. Appl.Math. 2014, 260, 68–77. [Google Scholar] [CrossRef]
  5. Aghajani, A.; Sabzali, N. Existence of coupled fixed points via measure of noncompactness and applications. J. Nonlinear Convex Anal. 2014, 14, 941–952. [Google Scholar]
  6. Arab, R. Application of measure of noncompactness for the system of functional integral equations. Filomat 2016, 30, 3063–3073. [Google Scholar] [CrossRef]
  7. Banas, J.; Rzepka, B. An application of a measure of noncompactness in the study of asymptotic stability. Appl. Math. Lett. 2003, 16, 1–6. [Google Scholar] [CrossRef] [Green Version]
  8. Das, A.; Hazarika, B.; Arab, R.; Mursaleen, M. Application of a fixed point theorem to the existence of solutions to the nonlinear functional integral equations in two variables. Rend. Del Circ. Mat. Palermo Ser. 2 2019, 68, 139–152. [Google Scholar] [CrossRef]
  9. Deep, A.; Deepmala; Tunc, C. On the existence of solutions of some non-linear functional integral equations in Banach algebra with applications. Arab J. Basic Appl. Sci. 2020, 27, 279–286. [Google Scholar] [CrossRef]
  10. Deep, A.; Deepmala; Roshan, J.R. Solvability for generalized non-linear integral equations in Banach spaces with applications. J. Int. Eq. Appl. 2021, 33, 19–30. [Google Scholar]
  11. Deep, A.; Deepmala; Rabbani, M. A numerical method for solvability of some non-linear functional integral equations. Appl. Math. Comput. 2021, 402, 125637. [Google Scholar] [CrossRef]
  12. Deep, A.; Deepmala; Roshan, J.R.; Nisar, K.S.; Abdeljawad, T. An extension of Darbo’s fixed point theorem for a class of system of nonlinear integral equations. Adv. Diff. Eq. 2020, 483, 1–17. [Google Scholar] [CrossRef]
  13. Deep, A.; Deepmala; Hazarika, B. An existence result for Hadamard type two dimensional fractional functional integral equations via measure of noncompactness. Chaos Solitons Fractals 2021, 147, 110874. [Google Scholar] [CrossRef]
  14. Kazemi, M.; Ezzati, R. Existence of solution for some nonlinear two-dimensional Volterra integral equations via measures of noncompactness. Appl. Math. Comput. 2016, 275, 165–171. [Google Scholar] [CrossRef]
  15. Kazemi, M.; Ezzati, R. Existence of solutions for some nonlinear Volterra integral equations via Petryshyn’s fixed point theorem. Int. J. Nonlinear Anal. Appl. 2018, 9, 1–12. [Google Scholar]
  16. Kazemi, M.; Doostdar, M.R. Application of fixed point theorem to solvability of functional stochastic integral equations. Appl. Math. Comput. 2022, 417, 126759. [Google Scholar] [CrossRef]
  17. Matani, B.; Roshan, J.R.; Hussain, N. An extension of Darbo’s theorem via measure of non-compactness with its application in the solvability of a system of integral equations. Filomat 2019, 33, 6315–6334. [Google Scholar] [CrossRef]
  18. Rabbani, M.; Deep, A.; Deepmala. On some generalized non-linear functional integral equations of two variables via measures of non-compactness and numerical method to solve it. Math. Sci. 2021, 15, 317–324. [Google Scholar] [CrossRef]
  19. Roshan, J.R. Existence of solutions for a class of system of functional integral equation via measure of noncompactness. J. Comput. Appl. Math. 2017, 313, 129–141. [Google Scholar] [CrossRef]
  20. Banas, J.; Goebel, K. Measures of Noncompactness in Banach Space; Lecture Notes Pure and Applied Mathematics; Dekker: New York, NY, USA, 1980. [Google Scholar]
  21. Chang, S.S.; Cho, Y.J.; Huang, N.J. Coupled fixed point theorems with applications. J. Korean Math. Soc. 1996, 33, 575–585. [Google Scholar]
  22. Banas, J. One measures of noncompactness in Banach space. Comment. Math. Univ. Carol. 1980, 21, 131–143. [Google Scholar]
  23. Aghajani, A.; Banas, J.; Sabzali, N. Some generalizations of Darbo fixed point theorem and applications. Bull. Belg. Math. Soc.-Simon Stevin 2013, 20, 345–358. [Google Scholar] [CrossRef]
  24. Hazarika, B.; Arab, R.; Kumam, P. Coupled fixed point theorems in partially ordered metric spaces via mixed g-monotone property. J. Fixed Point Theory Appl. 2019, 29, 1–19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Kumar, R.; Kumar, S.; Sajid, M.; Singh, B. On Solvability for Some Classes of System of Non-Linear Integral Equations in Two Dimensions via Measure of Non-Compactness. Axioms 2022, 11, 628. https://doi.org/10.3390/axioms11110628

AMA Style

Kumar R, Kumar S, Sajid M, Singh B. On Solvability for Some Classes of System of Non-Linear Integral Equations in Two Dimensions via Measure of Non-Compactness. Axioms. 2022; 11(11):628. https://doi.org/10.3390/axioms11110628

Chicago/Turabian Style

Kumar, Rakesh, Shubham Kumar, Mohammad Sajid, and Bhupander Singh. 2022. "On Solvability for Some Classes of System of Non-Linear Integral Equations in Two Dimensions via Measure of Non-Compactness" Axioms 11, no. 11: 628. https://doi.org/10.3390/axioms11110628

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop