# Interdimensionality

## Abstract

**:**

## 1. A Caveat: Speculation and Progress

## 2. Definition

## 3. Disjoint and Intertwining Shadows

## 4. Interdimensional Motion

#### 4.1. Interdimensional Chronology Protection

#### 4.2. Examples of Dimensional Relativity

## 5. Further Speculations

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Gold, M.E. Language identification in the limit. Inf. Control
**1967**, 10, 447–474. [Google Scholar] [CrossRef] [Green Version] - Angluin, D.; Smith, C.H. Inductive Inference: Theory and Methods. ACM Comput. Surv.
**1983**, 15, 237–269. [Google Scholar] [CrossRef] - Frankfurt, H.G. On Bullshit; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Lakatos, I. Falsification and the methodology of scientific research programmes. In The Methodology of Scientific Research Programmes. Philosophical Papers Volume 1; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar] [CrossRef]
- Kuhn, T.S. The Structure of Scientific Revolutions, 4th ed.; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
- Feyerabend, P.K. Problems of Empiricism. Philosophical Papers, Volume 2; Cambridge University Press: Cambridge, UK, 1981. [Google Scholar] [CrossRef]
- Feyerabend, P.K. How to Defend Society Against Science. Radic. Philos.
**1975**, 11, 3–9. [Google Scholar] - Svozil, K. Dimensional reduction via dimensional shadowing. J. Phys. A Math. Gen.
**1986**, 19, L1125–L1127. [Google Scholar] [CrossRef] - Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications, 3rd ed.; John Wiley & Sons: Chichester, UK, 2014. [Google Scholar]
- Zeilinger, A.; Svozil, K. Measuring the dimension of space–time. Phys. Rev. Lett.
**1985**, 54, 2553–2555. [Google Scholar] [CrossRef] [PubMed] - Svozil, K.; Zeilinger, A. Dimension of space–time. Int. J. Mod. Phys.
**1986**, A1, 971–990. [Google Scholar] [CrossRef] [Green Version] - Wertheimer, M. Experimental studies on seeing motion. In On Perceived Motion and Figural Organization; Spillmann, L., Ed.; The MIT Press: Cambridge, MA, USA, 2012; pp. 1–91. [Google Scholar]
- Goldstein, E.B.; Brockmole, J.R. Sensation and Perception, 10th ed.; Cengage Learning: Boston, MA, USA, 2017. [Google Scholar]
- Federer, H. Geometric Measure Theory; Springer: Berlin/Heidelberg, Germany, 1969. [Google Scholar] [CrossRef]
- Wagon, S. The Banach-Tarski Paradox. In Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar] [CrossRef]
- Abbott, E. Flatland: A Romance of Many Dimensions, unabridged 1884 ed.; Princeton University Press: Princeton, NJ, USA, 2015. [Google Scholar]
- Svozil, K. Towards Fractal Gravity. Found. Sci.
**2019**, 25, 275–280. [Google Scholar] [CrossRef] [Green Version] - Hill, T.; Sanders, B.C.; Deng, H. Cooperative light scattering in any dimension. Phys. Rev. A
**2017**, 95, 033832. [Google Scholar] [CrossRef] [Green Version] - Mitic, V.V.; Lazovic, G.; Paunovic, V.; Cvetkovic, N.; Jovanovic, D.; Veljkovic, S.; Randjelovic, B.; Vlahovic, B. Fractal frontiers in microelectronic ceramic materials. Ceram. Int.
**2019**, 45, 9679–9685. [Google Scholar] [CrossRef] - Svozil, K. Relativizing Relativity. Found. Phys.
**2000**, 30, 1001–1016. [Google Scholar] [CrossRef] - Carr, B. (Ed.) Universe or Multiverse? Cambridge University Press: Cambridge, UK, 2007. [Google Scholar] [CrossRef]
- Lentz, E.W. Breaking the warp barrier: Hyper-fast solitons in Einstein-Maxwell-plasma theory. Class. Quantum Grav.
**2021**, 38, 075015. [Google Scholar] [CrossRef]

**Figure 1.**Schematic drawing of interdimensional configurations that are (

**a**) isolated or (

**b**) intertwine, as seen from some outer, embedding space.

**Figure 2.**Schematic drawing of worldlines of interdimensional motion, as seen from the outer, embedding space: (

**a**) periodic, (

**b**) shortcut, and (

**c**) coevolution.

**Figure 3.**Schematic drawing of (

**a**) worldlines of interdimensional “jump” motion, as seen from the outer, embedding space: (

**a**) “dive” into N at A, reappearance at B; (

**b**) space–time diagram as seen from intrinsic coordinates in M; (

**c**) space–time diagram as seen from intrinsic coordinates in N.

**Figure 4.**Schematic drawing of (

**a**) worldlines of interdimensional forced, continuous motion, as seen from the outer, embedding space: (

**a**) until A and from B, the motion is dominated by constraints on the velocity ${v}_{N}$, and between A and B, the velocity ${c}_{N}$ dominates; (

**b**) space–time diagram as seen from intrinsic coordinates in M; (

**c**) space–time diagram as seen from intrinsic coordinates in N.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Svozil, K.
Interdimensionality. *Axioms* **2021**, *10*, 300.
https://doi.org/10.3390/axioms10040300

**AMA Style**

Svozil K.
Interdimensionality. *Axioms*. 2021; 10(4):300.
https://doi.org/10.3390/axioms10040300

**Chicago/Turabian Style**

Svozil, Karl.
2021. "Interdimensionality" *Axioms* 10, no. 4: 300.
https://doi.org/10.3390/axioms10040300