A Parametric Type of Cauchy Polynomials with Higher Level
Abstract
:1. Introduction
2. Basic Properties
3. Determinants
4. Discussion
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cheon, G.-S.; Hwang, S.-G.; Lee, S.-G. Several polynomials associated with the harmonic numbers. Discrete Appl. Math. 2007, 155, 2573–2584. [Google Scholar] [CrossRef] [Green Version]
- Comtet, L. Advanced Combinatorics; Riedel: Dordrech, The Netherlands; Boston, MA, USA, 1974. [Google Scholar]
- Merlini, D.; Sprugnoli, R.; Verri, M.C. The Cauchy numbers. Discrete Math. 2006, 306, 1906–1920. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.-Z. Sums of products of Cauchy numbers. Discrete Math. 2009, 309, 3830–3842. [Google Scholar] [CrossRef] [Green Version]
- Agoh, T.; Dilcher, K. Recurrence relations for Nörlund numbers and Bernoulli numbers of the second kind. Fibonacci Quart. 2010, 48, 4–12. [Google Scholar]
- Liu, G.-D.; Srivastava, H.M. Explicit formulas for the Norlund polynomials Bn(x) and bn(x). Comput. Math. Appl. 2006, 51, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Nörlund, N.E. Vorlesungen über Differenzenrechnung; Springer: Berlin, Germany, 1924. [Google Scholar]
- Howard, F.T. Explicit formulas for degenerate Bernoulli numbers. Discrete Math. 1996, 162, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, T. Poly-Cauchy numbers. Kyushu J. Math. 2013, 67, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Liu, G. An explicit formula for higher order Bernoulli polynomials of the second kind. Integers 2013, 13, 1–7. [Google Scholar]
- Cenkci, M.; Howard, F.T. Notes on degenerate numbers. Discrete Math. 2007, 307, 2359–2375. [Google Scholar] [CrossRef]
- Howard, F.T. Degenerate weighted Stirling numbers. Discrete Math. 1985, 57, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, T. Hypergeometric Cauchy numbers. Int. J. Number Theory 2013, 9, 545–560. [Google Scholar] [CrossRef]
- Carlitz, L. Degenerate Stirling, Bernoulli, and Eulerian numbers. Utilitas Math. 1979, 15, 51–88. [Google Scholar]
- Kaneko, M. Poly-Bernoulli numbers. J. Théor. Nombres Bordx. 1997, 9, 199–206. [Google Scholar] [CrossRef]
- Hassen, A.; Nguyen, H.D. Hypergeometric Bernoulli polynomials and Appell sequences. Int. J. Number Theory 2008, 4, 767–774. [Google Scholar] [CrossRef] [Green Version]
- Hassen, A.; Nguyen, H.D. Hypergeometric zeta functions. Int. J. Number Theory 2010, 6, 99–126. [Google Scholar] [CrossRef] [Green Version]
- Kamano, K. Sums of products of hypergeometric Bernoulli numbers. J. Number Theory 2010, 130, 2259–2271. [Google Scholar] [CrossRef] [Green Version]
- Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. Symbolic computation of some power-trigonometric series. J. Symb. Comput. 2017, 80, 273–284. [Google Scholar] [CrossRef]
- Osler, T.J. An identity for simplifying certain generalized hypergeometric functions. Math. Comput. 1975, 29, 888–893. [Google Scholar]
- Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. An extension of the Euler-Maclaurin quadrature formula using a parametric type of Bernoulli polynomials. Bull. Sci. Math. 2019, 156, 102798. [Google Scholar] [CrossRef]
- Komatsu, T. A parametric type of Bernoulli polynomials with level 3. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2020, 114. Paper No. 151. [Google Scholar] [CrossRef]
- Masjed-Jamei, M.; Beyki, M.R.; Koepf, W. A new type of Euler polynomials and numbers. Mediterr. J. Math. 2018, 15, 1–17. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kízílateş, C. A parametric kind of the Fubini-type polynomials. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2019, 113, 3253–3267. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Masjed-Jamei, M.; Beyki, M.R. Some new generalizations and applications of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. Rocky Mt. J. Math. 2019, 49, 681–697. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Ricci, P.E.; Natalini, P. A family of complex Appell polynomial sets. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM 2019, 113, 2359–2371. [Google Scholar] [CrossRef]
- Lehmer, D.H. Lacunary recurrence formulas for the numbers of Bernoulli and Euler. Ann. Math. 1935, 36, 637–649. [Google Scholar] [CrossRef]
- Barman, R.; Komatsu, T. Lehmer’s generalized Euler numbers in hypergeometric functions. J. Korean Math. Soc. 2019, 56, 485–505. [Google Scholar]
- Komatsu, T. A parametric type of Cauchy polynomials with level 3. Miskolc Math. Notes. accepted for publication MMN-3652.
- Glaisher, J.W.L. Expressions for Laplace’s coefficients, Bernoullian and Eulerian numbers etc. as determinants. Messenger (2) 1875, 6, 49–63. [Google Scholar]
- Komatsu, T.; Ramirez, J.L. Some Determinants Involving Incomplete Fubini Numbers. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 2018, 26, 147–153. Available online: https://www.sciendo.com/article/10.2478/auom-2018-0038 (accessed on 1 August 2021). [CrossRef] [Green Version]
- Muir, T. The Theory of Determinants in the Historical Order of Development; Dover Publications: New York, NY, USA, 1960; Volume 4. [Google Scholar]
- Trudi, N. Intorno ad alcune formole di sviluppo. Rendic. Dell’ Accad. Napoli 1862, 135–143. [Google Scholar]
- Brioschi, F. Sulle funzioni Bernoulliane ed Euleriane. Ann. Mat. Pura Appl. 1858, 1, 260–263. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komatsu, T. A Parametric Type of Cauchy Polynomials with Higher Level. Axioms 2021, 10, 207. https://doi.org/10.3390/axioms10030207
Komatsu T. A Parametric Type of Cauchy Polynomials with Higher Level. Axioms. 2021; 10(3):207. https://doi.org/10.3390/axioms10030207
Chicago/Turabian StyleKomatsu, Takao. 2021. "A Parametric Type of Cauchy Polynomials with Higher Level" Axioms 10, no. 3: 207. https://doi.org/10.3390/axioms10030207
APA StyleKomatsu, T. (2021). A Parametric Type of Cauchy Polynomials with Higher Level. Axioms, 10(3), 207. https://doi.org/10.3390/axioms10030207