Stable Convergence Theorems for Products of Uniformly Continuous Mappings in Metric Spaces
Abstract
:1. Introduction
2. Main Results
3. Auxiliary Results
4. Proof of Theorem 1
5. Proof of Theorem 2
6. Proof of Theorem 3
7. An Application
Funding
Conflicts of Interest
References
- Betiuk-Pilarska, A.; Benavides, T.D. Fixed points for nonexpansive mappings and generalized nonexpansive mappings on Banach lattices. Pure Appl. Func. Anal. 2016, 1, 343–359. [Google Scholar]
- Bruck, R.E.; Kuczumow, T.; Reich, S. Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property. Colloquium Math. 1993, 65, 169–179. [Google Scholar] [CrossRef] [Green Version]
- Ceng, L.C.; Xu, H.K.; Yao, J.C. The viscosity approximation method for asymptotically nonexpansive mappings in Banach spaces. Nonlinear Anal. 2008, 69, 1402–1412. [Google Scholar] [CrossRef]
- Goebel, K.; Kirk, W.A. Topics in Metric Fixed Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Goebel, K.; Kirk, W.A. Classical theory of nonexpansive mappings. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 49–91. [Google Scholar]
- Goebel, K.; Reich, S. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings; Marcel Dekker: New York, NY, USA, 1984. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Jachymski, J. Extensions of the Dugundji-Granas and Nadler’s theorems on the continuity of fixed points. Pure Appl. Funct. Anal. 2017, 2, 657–666. [Google Scholar]
- Kirk, W.A. Contraction mappings and extensions. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 1–34. [Google Scholar]
- Kubota, R.; Takahashi, W.; Takeuchi, Y. Extensions of Browder’s demiclosedness principle and Reich’s lemma and their applications. Pure Appl. Func. Anal. 2016, 1, 63–84. [Google Scholar]
- Petrusel, A.; Petrusel, G.; Yao, J.C. Multi-valued graph contraction principle with applications. Optimization 2020, 69, 1541–1556. [Google Scholar] [CrossRef]
- Petrusel, A.; Petrusel, G.; Yao, J.C. Graph contractions in vector-valued metric spaces and applications. Optimization 2021, 70, 763–775. [Google Scholar] [CrossRef]
- Reich, S.; Zaslavski, A.J. Generic aspects of metric fixed point theory. In Handbook of Metric Fixed Point Theory; Kluwer: Dordrecht, The Netherlands, 2001; pp. 557–575. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Genericity in nonlinear analysis. In Developments in Mathematics; Springer: New York, NY, USA, 2014; Volume 34. [Google Scholar]
- Reich, S.; Zaslavski, A.J. Asymptotic behavior of inexact infinite products of nonexpansive mappings in metric spaces. Z. Anal. Anwend. 2014, 33, 101–117. [Google Scholar] [CrossRef] [Green Version]
- Reich, S.; Zaslavski, A.J. Asymptotic behavior of inexact orbits of nonexpansive mappings. Topol. Methods Nonlinear Anal. 2020. [Google Scholar] [CrossRef]
- Rezapour, S.; Yao, J.-C.; Zakeri, S.H. A strong convergence theorem for quasi-contractive mappings and inverse strongly monotone mappings. Pure Appl. Funct. Anal. 2020, 5, 733–745. [Google Scholar]
- Takahashi, W. Weak and strong convergence theorems for two generic generalized nonspreading mappings in Banach spaces. Pure Appl. Funct. Anal. 2020, 5, 747–767. [Google Scholar]
- Takahashi, W.; Wen, C.-F.; Yao, J.-C. A strong convergence theorem by Halpern type iteration for a finite family of generalized demimetric mappings in a Hilbert space. Pure Appl. Funct. Anal. 2019, 4, 407–426. [Google Scholar]
- Takahashi, W.; Xu, H.K.; Yao, J.C. Iterative methods for generalized split feasibility problems in Hilbert spaces. Set-Valued Var. Anal. 2015, 23, 205–221. [Google Scholar] [CrossRef]
- Zaslavski, A.J. Approximate solutions of common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2016. [Google Scholar]
- Zaslavski, A.J. Algorithms for solving common fixed point problems. In Springer Optimization and Its Applications; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Zaslavski, A.J. Stable convergence theorems for infinite products of nonlinear mappings. Adv. Nonlinear Var. Inequalities 2021, 24, 49–58. [Google Scholar]
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Cegielski, A.; Reich, S.; Zalas, R. Regular sequences of quasi-nonexpansive operators and their applications. SIAM J. Optim. 2018, 28, 1508–1532. [Google Scholar] [CrossRef] [Green Version]
- Censor, Y.; Zaknoon, M. Algorithms and convergence results of projection methods for inconsistent feasibility problems: A review. Pure Appl. Func. Anal. 2018, 3, 565–586. [Google Scholar]
- Gibali, A. A new split inverse problem and an application to least intensity feasible solutions. Pure Appl. Funct. Anal. 2017, 2, 243–258. [Google Scholar]
- Takahashi, W. The split common fixed point problem and the shrinking projection method for new nonlinear mappings in two Banach spaces. Pure Appl. Funct. Anal. 2017, 2, 685–699. [Google Scholar]
- Takahashi, W. A general iterative method for split common fixed point problems in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2018, 3, 349–369. [Google Scholar]
- Takahashi, W. A strong convergence theorem for two infinite sequences of nonlinear mappings in Hilbert spaces and applications. Pure Appl. Funct. Anal. 2019, 4, 629–647. [Google Scholar]
- Butnariu, D.; Reich, S.S.; Zaslavski, A.J. Asymptotic behavior of inexact orbits for a class of operators in complete metric spaces. J. Appl. Anal. 2007, 13, 1–11. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaslavski, A.J. Stable Convergence Theorems for Products of Uniformly Continuous Mappings in Metric Spaces. Axioms 2021, 10, 156. https://doi.org/10.3390/axioms10030156
Zaslavski AJ. Stable Convergence Theorems for Products of Uniformly Continuous Mappings in Metric Spaces. Axioms. 2021; 10(3):156. https://doi.org/10.3390/axioms10030156
Chicago/Turabian StyleZaslavski, Alexander J. 2021. "Stable Convergence Theorems for Products of Uniformly Continuous Mappings in Metric Spaces" Axioms 10, no. 3: 156. https://doi.org/10.3390/axioms10030156
APA StyleZaslavski, A. J. (2021). Stable Convergence Theorems for Products of Uniformly Continuous Mappings in Metric Spaces. Axioms, 10(3), 156. https://doi.org/10.3390/axioms10030156