Next Article in Journal
Slice Holomorphic Functions in the Unit Ball Having a Bounded L-Index in Direction
Next Article in Special Issue
Using the Supremum Form of Auxiliary Functions to Study the Common Coupled Coincidence Points in Fuzzy Semi-Metric Spaces
Previous Article in Journal
A Remark for the Hyers–Ulam Stabilities on n-Banach Spaces
Previous Article in Special Issue
Fixed Points of g-Interpolative Ćirić–Reich–Rus-Type Contractions in b-Metric Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

e-Distance in Menger PGM Spaces with an Application

by
Ehsan Lotfali Ghasab
1,
Hamid Majani
1,*,
Manuel De la Sen
2,* and
Ghasem Soleimani Rad
3
1
Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
2
Institute of Research and Development of Processes IIDP, University of the Basque Country, 48940 Leioa, Spain
3
Young Researchers and Elite Club, West Tehran Branch, Islamic Azad University, Tehran 1477893855, Iran
*
Authors to whom correspondence should be addressed.
Submission received: 24 September 2020 / Revised: 16 December 2020 / Accepted: 24 December 2020 / Published: 30 December 2020
(This article belongs to the Special Issue Fixed Point Theory and Its Related Topics II)

Abstract

:
The main purpose of the present paper is to define the concept of an e-distance (as a generalization of r-distance) on a Menger PGM space and to introduce some of its properties. Moreover, some coupled fixed point results, in terms of this distance on a complete PGM space, are proved. To support our definitions and main results, several examples and an application are considered.
MSC:
JPrimary 47H10; Secondary 47S50

1. Introduction and Preliminaries

In 1942, Menger [1] introduced Menger probabilistic metric spaces as an extension of metric spaces. After that, Sehgal and Bharucha-Reid [2,3] studied some fixed point results for different classes of probabilistic contractions (also, see and references in the citation). Moreover, in 2009, Saadati et al. [4] introduced the concept of r-distance on this space.
Throughout this paper, the set of all Menger distance distribution functions are denoted by D + .
Definition 1
([5], page 1). A binary mapping T : [ 0 , 1 ] × [ 0 , 1 ] [ 0 , 1 ] is called t-norm if the following propertied are held:
(a) 
T is commutative and associative;
(b) 
T is continuous;
(c) 
T ( a , 1 ) = a if a [ 0 , 1 ] ;
(d) 
T ( a , b ) T ( c , d ) if a c and b d for every a , b , c , d [ 0 , 1 ] .
Definition 2
([4]). A t-norm T is called an H-type I if for ϵ ( 0 , 1 ) , there exist δ ( 0 , 1 ) so that T m ( 1 δ , , 1 δ ) > 1 ϵ for each m N , where T m recursively defined by T 1 = T and T m ( t 1 , t 2 , , t m + 1 ) = T ( T m 1 ( t 1 , t 2 , , t m ) , t m + 1 ) for m = 2 , 3 , and t i [ 0 , 1 ] .
All t-norms in the sequel are from class of H-type I.
From another point of view, Mustafa and Sims [6] defined G-metric spaces as another extension of metric spaces, analyzed the structure of this space, and continued the theory of fixed point in such spaces. In 2014, Zhou et al. [7], by combining Menger P M -spaces and G-metric spaces, defined Menger probabilistic generalized metric space (shortly, Menger PGM space). Other researchers extended several fixed point theorems in [8,9,10] and references contained therein.
Definition 3
([7]). Assume that X is a nonempty set, T is a continuous t-norm and G : X 3 D + is a mapping satisfying the following properties for all x , y , z , a X and s , t > 0 :
  • (PG1) G x , y , z ( t ) = 1 if and only if x = y = z ;
  • (PG2) G x , x , y ( t ) G x , y , z ( t ) , where z y ;
  • (PG3) G x , y , z ( t ) = G x , z , y ( t ) = G y , x , z ( t ) = ;
  • (PG4) G x , y , z ( t + s ) T ( G x , a , a ( s ) , G a , y , z ( t ) ) .
  • Then ( X , G , T ) is named a Menger PGM space.
For the definitions of convergent, completeness, closedness and some theorems by regarding these concepts in such spaces, one can see [7]. In 2004, Ran and Reurings [11] discussed on fixed point results for comparable elements of a metric space ( X , d ) provided with a partial order. Then, Bhaskar and Lakshmikantham [12] presented several fixed point results for a mapping having mixed monotone property in such spaces (see [13,14]).
Definition 4
([12]). Consider a ordered set ( X , ) and a mapping F : X 2 X . The mapping F is told to be have mixed monotone property if
x 1 x 2 i m p l i e s   t h a t F ( x 1 , y ) F ( x 2 , y ) x 1 , x 2 X , y 1 y 2 i m p l i e s   t h a t F ( x , y 1 ) F ( x , y 2 ) y 1 , y 2 X .
for every x , y X .
Here we introduce an e-distance on Menger PGM spaces and some of its properties. Then we obtain some coupled fixed point results in the quasi-ordered version of such spaces. The subject of the paper offers novelties compared to the related background literature since a new distance in Menger spaces is defined while some of its properties are revisited and extended.

2. Main Results

Here, we consider an e-distance on a Menger PGM space, which is an extension of r-distance introduced by Saadati et al. [4].
Definition 5.
Consider a Menger PGM space ( X , G , T ) . Then the function g : X 3 × [ 0 , ] [ 0 , 1 ] is called an e-distance, if for all x , y , z , a X and s , t 0 the following are held:
(r1) 
g x , y , z ( t + s ) T ( g x , a , a ( s ) , g a , y , z ( t ) ) ;
(r2) 
g x , y , . ( t ) and g x , . , y ( t ) are continuous;
(r3)  
for each ϵ > 0 , there exists δ > 0 provided that g a , y , z ( t ) 1 δ and g x , a , a ( s ) 1 δ conclude that G x , y , z ( t + s ) 1 ϵ .
Lemma 1.
Each Menger PGM is an e-distance on X .
Proof. 
Clearly, (r1) and (r2) are true. Only, we prove that (r3) is true. Assume ϵ > 0 and select δ > 0 so that T ( 1 δ , 1 δ ) 1 ϵ . Then, for G a , y , z ( t ) 1 δ and G x , a , a ( s ) 1 δ , we get
G x , y , z ( t + s ) T ( G a , y , z ( t ) , G x , a , a ( s ) ) T ( 1 δ , 1 δ ) 1 ϵ .
Example 1.
Assume ( X , G , T ) is a Menger PGM space. Define a function g : X 3 × [ 0 , ] [ 0 , 1 ] by g x , y , z ( t ) = 1 c for each x , y , z X and t > 0 with c ( 0 , 1 ) . Then g is an e-distance.
Lemma 2.
Consider a Menger PGM space with a continuous mapping A on X and a function g : X 3 × [ 0 , ] [ 0 , 1 ] by g x , y , z ( t ) = min { G x , y , z ( t ) , G A x , A y , A z ( t ) } for each x , y , z X and t > 0 . Then g is an e-distance on X .
Proof. 
The condition (r2) is clearly established. To prove (r1), consider x , y , z , a X and t , s > 0 . Then, we have two following cases:
  Case 1: if G x , y , z ( t ) = min { G x , y , z ( t ) , G A x , A y , A z ( t ) } , then
g x , y , z ( t + s ) = G x , y , z ( t + s ) T ( G x , a , a ( t ) , G a , y , z ( s ) ) T ( min { G x , a , a ( t ) , G A x , A a , A a ( t ) } , min { G a , y , z ( s ) , G A a , A y , A z ( s ) } ) T ( g x , a , a ( t ) , g a , y , z ( s ) ) .
  Case 2: if G A x , A y , A z ( t ) = min { G x , y , z ( t ) , G A x , A y , A z ( t ) } , then
g x , y , z ( t + s ) = G A x , A y , A z ( t + s ) T ( G A x , A a , A a ( t ) , G A a , A y , A z ( s ) ) T ( min { G x , a , a ( t ) , G A x , A a , A a ( t ) } , min { G a , y , z ( s ) , G A a , A y , A z ( s ) } ) T ( g x , a , a ( t ) , g a , y , z ( s ) ) .
Therefore, (r1) is established. Now, assume ϵ > 0 and select δ > 0 so that T ( 1 δ , 1 δ ) 1 ϵ . Using g x , a , a ( t ) 1 δ and g a , y , z ( s ) 1 δ , we get
min { G x , a , a ( t ) , G A x , A a , A a ( t ) } = g x , a , a ( t ) 1 δ , min { G a , y , z ( s ) , G A a , A y , A z ( s ) } = g a , y , z ( s ) 1 δ ,
which induces that
G x , y , z ( t + s ) T ( G x , a , a ( t ) , G a , y , z ( s ) ) T ( min { G x , a , a ( t ) , G A x , A a , A a ( t ) } , min { G a , y , z ( s ) , G A a , A y , A z ( s ) } ) = T ( g x , a , a ( t ) , g a , y , z ( s ) ) T ( 1 δ , 1 δ ) 1 ϵ .
Thus, (r3) is established. This completes the proof. □
Lemma 3.
Consider an e-distance g on ( X , G , T ) with two sequences { x n } and { y n } in X . Suppose that { α n } and { β n } are two non-negative sequences converging to 0. Then for x , y , z X and t , s > 0 the following assertions are established:
(i) 
g z , y , x n ( t ) 1 α n and g x , x n , x n ( t ) 1 β n for any n N imply x = y = z . Specially, g x , a , a ( t ) = 1 and g a , y , z ( s ) = 1 imply x = y = z ;
(ii) 
g y n , x n , x n ( t ) 1 α n and g x n , y m , z ( t ) 1 β n for all m > n with m , n N imply G y n , y m , z ( t + s ) 1 as n ;
(iii) 
let g x n , x m , x l ( t ) 1 α n for all n , m , l N , where l > m > n . Then { x n } is a Cauchy sequence;
(iv) 
let g y , y , x l ( t ) 1 α n for all n N . Then { x n } is a Cauchy sequence.
Proof. 
To prove (ii), assume ϵ > 0 . By applying the definition of e-distance, there exists δ > 0 so that g a , y , z ( t ) 1 δ and g x , a , a ( s ) 1 δ induce G x , y , z ( t + s ) 1 ϵ . Select n 0 N provided that α n δ and β n δ for each n n 0 . Then g y n , x n , x n ( t ) 1 α n 1 δ and g x n , y m , z ( t ) 1 β n 1 δ for any n n 0 and hence G y n , y m , z ( t + s ) 1 ϵ . Therefore, { y n } converges to z. Now, using (ii), (i) is established. To prove (iii), assume ϵ > 0 . Similar to the proof of (ii), select δ > 0 and n 0 N . Then, for all n , m , l n 0 + 1 , we get g x n , x n 0 , x n 0 ( t ) 1 α n 0 1 δ and g x n 0 , x l , x m ( t ) 1 α n 0 1 δ . Therefore, G x n , x m , x l ( t ) 1 ϵ . Hence, { x n } is a Cauchy sequence. Now, it follows from (iii) that (iv) is true. □
Lemma 4.
Consider an e-distance g on ( X , G , T ) . Suppose that E λ , g : X 3 R + { 0 } is introduced by E λ , g ( x , y , z ) = inf { t > 0 : g x , y , z ( t ) > 1 λ } for any x , y , z X and λ ( 0 , 1 ) . Then
(1) 
for all μ ( 0 , 1 ) , there exists λ ( 0 , 1 ) so that
          E μ , g ( x 1 , x 1 , x n ) E λ , g ( x 1 , x 1 , x 2 ) + E λ , g ( x 2 , x 2 , x 3 ) + + E λ , g ( x n 1 , x n 1 , x n )
for each x 1 , , x n X ;
(2) 
for every sequence { x n } in X , g x n , x , x ( t ) 1 iff E λ , g ( x n , x , x ) 0 . Further, the sequence { x n } is Cauchy w.r.t. g iff it is Cauchy with E λ , g .
Proof. 
(1)
For every μ ( 0 , 1 ) , we can gain λ ( 0 , 1 ) provided that T n 1 ( 1 λ , , 1 λ ) 1 μ . Now, for every δ > 0 , we have
g x 1 , x 1 , x n ( E λ , g ( x 1 , x 1 , x 2 ) + E λ , g ( x 2 , x 2 , x 3 ) + + E λ , g ( x n 1 , x n 1 , x n ) + n δ ) T n 1 ( g x 1 , x 1 , x 2 ( E λ , g ( x 1 , x 1 , x 2 ) + δ ) , g x 2 , x 2 , x 3 ( E λ , g ( x 2 , x 2 , x 3 ) + δ ) , , g x n 1 , x n 1 , x n ( E λ , g ( x n 1 , x n 1 , x n ) + δ ) ) T n 1 ( 1 λ , , 1 λ ) 1 μ
which induces that
E μ , g ( x 1 , x 1 , x n ) E λ , g ( x 1 , x 1 , x 2 ) + E λ , g ( x 2 , x 2 , x 3 ) + + E λ , g ( x n 1 , x n 1 , x n ) + n δ .
Since δ > 0 is optional, we obtain
E μ , g ( x 1 , x 1 , x n ) E λ , g ( x 1 , x 1 , x 2 ) + E λ , g ( x 2 , x 2 , x 3 ) + + E λ , g ( x n 1 , x n 1 , x n ) .
(2)
Note that g x n , x , x ( η ) 1 λ as n iff E λ , g ( x n , x , x ) < η for each n N and η > 0 .
In the sequel, we establish some coupled fixed point theorems by regarding an e-distance on a quasi-ordered complete PGM space.
Theorem 1.
Let ( X , G , T , ) be a quasi-ordered complete Menger PGM space with T of Hadzić-type I, g be an e-distance and f : X 2 X be a mapping having the mixed monotone property on X . Assume that there exists a k [ 0 , 1 ) such that
g f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) 1 2 ( g x , u , w ( t k ) + g y , v , z ( t k ) )
for all x , y , z , u , v , w X with x u w and y v z , where either u w or v z and
sup { T ( g x , y , z ( t ) , g x , y , f ( x , y ) ( t ) ) : x , y X } < 1 .
for all z X , where z f ( z , q ) for all q X . If there exist x 0 , y 0 X so that x 0 f ( x 0 , y 0 ) and y 0 f ( y 0 , x 0 ) , then f have a coupled fixed point in X 2 .
Proof. 
Since there exist x 0 , y 0 X with x 0 f ( x 0 , y 0 ) and y 0 f ( y 0 , x 0 ) , and f has the mixed monotone property, we can construct Bhaskar-Lakshmikantham type iterative as follow:
x 0 x 1 x 2 x n + 1 , y 0 y 1 y 2 y n + 1
for all n 0 , where
x n + 1 = f n + 1 ( x 0 , y 0 ) = f ( f n ( x 0 , y 0 ) , f n ( y 0 , x 0 ) ) , y n + 1 = f n + 1 ( y 0 , x 0 ) = f ( f n ( y 0 , x 0 ) , f n ( x 0 , y 0 ) ) .
If ( x n + 1 , y n + 1 ) = ( x n , y n ) , then f has a coupled fixed point. Otherwise, assume ( x n + 1 , y n + 1 ) ( x n , y n ) for each n 0 ; that is, either x n + 1 = f ( x n , y n ) x n or y n + 1 = f ( y n , x n ) y n . Now, by induction and (1), we obtain
g x n , x n , x n + 1 ( t ) 1 2 ( g x 0 , x 0 , x 1 ( t k n ) + g y 0 , y 0 , y 1 ( t k n ) ) , g y n , y n , y n + 1 ( t ) 1 2 ( g y 0 , y 0 , y 1 ( t k n ) + g x 0 , x 0 , x 1 ( t k n ) ) ,
for each n 0 which induces that g x n , x n , x n + 1 ( t ) 1 2 g x 0 , x 0 , x 1 ( t k n ) and g y n , y n , y n + 1 ( t ) 1 2 g y 0 , y 0 , y 1 ( t k n ) . Therefore,
E λ , g ( x n , x n , x n + 1 ) = inf { t > 0 : g x n , x n , x n + 1 ( t ) > 1 λ } inf { t > 0 : 1 2 g x 0 , x 0 , x 1 ( t k n ) > 1 λ } = 2 k n E λ , g ( x 0 , x 0 , x 1 ) .
Thus, for m > n and λ ( 0 , 1 ) , there exists γ ( 0 , 1 ) so that
E λ , g ( x n , x n , x m ) E γ , g ( x n , x n , x n + 1 ) + + E γ , g ( x m 1 , x m 1 , x m ) 2 k n 1 k E γ , g ( x 0 , x 0 , x 1 ) .
Now, there exists n 0 N so that for each n > n 0 , E λ , g ( x n , x n , x m ) 0 . By Lemmas 3 and 4, { x n } is a Cauchy sequence. Thus, using Lemma 4 (ii), there exit n 1 N and a sequence δ n 0 so that g x n , x n , x m ( t ) 1 δ n for n max { n 0 , n 1 } . Since X is complete, { x n } converges to a point p X . Similarly, y n is convergent to a point q X . By (r2), we obtain g x n , x n , p ( t ) = lim m g x n , x n , x m ( t ) 1 δ n for n max { n 0 , n 1 } . Moreover, we get g x n , x n + 1 , x n + 1 ( t ) 1 δ n . Now, we show that f has a coupled fixed point. Let p f ( p , q ) . Then, by (2), we obtain
1 > sup { T ( g x , y , p ( t ) , g x , y , f ( x , y ) ( t ) ) : x , y X } sup { T ( g x n , x n , p ( t ) , g x n , x n + 1 , x n + 1 ( t ) ) : n N } sup { T ( 1 δ n , 1 δ n ) : n N } = 1 ,
which is a contradiction. Consequently, we get p = f ( p , q ) . Similarly, we obtain f ( q , p ) = q . Here, the proof ends. □
Theorem 2.
Assume the assumptions of Theorem 1 are held and consider the continuity of f instead of relation (2) . Then f has a coupled fixed point.
Proof. 
As in the proof of Theorem 1, construct x n and y n , where x n p , y n q , x n + 1 = f ( x n , y n ) . Now, by the continuity of f and by taking the limit as n , we get f ( p , q ) = p . Analogously, we can obtain f ( q , p ) = q . Therefore, ( p , q ) is a coupled fixed point of f. □
Example 2.
Assume that X = [ 0 , ) , " is a quasi-ordered on X and T ( a , b ) = m i n { a , b } . Define a constant function f : X 2 X by f ( a , b ) = p and G : X 3 D + by G x , y , z ( t ) = t t + G * ( x , y , z ) with G * ( x , y , z ) = | x y | + | x z | + | y z | for each x , y , z X . Clearly, G satisfies (PG1)-(PG4). Consider g x , y , z ( t ) = 1 c , where c ( 0 , 1 ) . Then g is an e-distance on X . Clearly, for all x , y , z , u , v , w X and for any t > 0 , we have g f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) 1 2 ( g x , u , w ( t k ) + g y , v , z ( t k ) ) . Moreover, there exist x 0 = 0 and y 0 = 1 so that 0 = x 0 f ( x 0 , y 0 ) and 1 = y 0 f ( y 0 , x 0 ) = 1 . Therefore, all of the hypothesis of Theorem 2 are held. Clearly, ( p , p ) is a coupled fixed point the function f.

3. Application

Consider the following system of integral equations:
x ( t ) = a b M ( t , s ) K ( s , x ( s ) , y ( s ) ) d s , y ( t ) = a b M ( t , s ) K ( s , y ( s ) , x ( s ) ) d s ,
for all t I = [ a , b ] , where b > a , M C ( I × I , [ 0 , ) ) and K C ( I × R × R , R ) .
Let C ( I , R ) be the Banach space of every real continuous functions on I with | | x | | = max t I | x ( t ) | for all x C ( I , R ) and C ( I × I × C ( I , R ) , R ) be the space of every continuous functions on I × I × C ( I , R ) . Define a mapping G : C ( I , R ) × C ( I , R ) D + by G x , y , z ( t ) = χ ( t 2 ( x y + x z + y z ) ) for all x , y , z C ( I , R ) and t > 0 , where
χ ( t ) = 0 i f t 0 1 i f t > 0
Then, ( C ( I , R ) , G , T ) with T ( a , b ) = min { a , b } is a complete Menger PGM space ([7]). Consider an e-distance on X by g x , y , z ( t ) = min { G x , y , z ( t ) , G A x , A y , A z ( t ) } , where A : C ( I , R ) C ( I , R ) and A x = x 2 . Moreover, we define the relation " on C ( I , R ) by x y | | x | | | | y | | for all x , y C ( I , R ) . Clearly the relation " is a quasi-order relation on C ( I , R ) and ( C ( I , R ) , G , T , ) is a quasi-ordered complete PGM space.
Theorem 3.
Let ( C ( I , R ) , G , T , ) be a quasi-ordered complete Menger PGM space and f : C ( I , R ) × C ( I , R ) C ( I , R ) be a operator defined by f ( x , y ) ( t ) = a b M ( t , s ) K ( s , x ( s ) , y ( s ) ) d s , where M C ( I × I , [ 0 , ) ) and K C ( I × R × R , R ) are two operators. Assume the following properties are held:
(i) 
| | K | | = sup s I , x , y C ( I , R ) | K ( s , x ( s ) , y ( s ) ) | < ;
(ii) 
for every x , y C ( I , R ) and every t , s I , we have
| | K ( s , x ( s ) , y ( s ) ) K ( s , u ( s ) , v ( s ) ) | | 1 4 ( max | x ( s ) u ( s ) | + max | y ( s ) v ( s ) | ) ;
(iii) 
max t I a b M ( t , s ) d s < 1 .
Then, the system (3) have a solution in C ( I , R ) × C ( I , R ) .
Proof. 
For all x , y C ( I , R ) , let x y = max t I ( | x ( t ) y ( t ) | ) . Then, for all x , y , z , u , v , w C ( I , R ) , we have
f ( x , y ) f ( u , v ) max t I a b M ( t , s ) | K ( s , x ( s ) y ( s ) ) K ( s , u ( s ) , v ( s ) ) | d s max ( 1 4 ( | x ( s ) u ( s ) | + | y ( s ) v ( s ) | ) ) max t I a b M ( t , s ) d s max ( 1 4 ( | x ( s ) u ( s ) | + | y ( s ) v ( s ) | ) ) .
We consider two following cases:
  Case 1. Let
g f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) = min { G f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) , G A f ( x , y ) , A f ( u , v ) , A f ( w , z ) ( t ) } = G f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) .
Then, we obtain
g f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) = G f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) = χ ( t 2 ( f ( x , y ) f ( u , v ) + f ( x , y ) f ( w , z ) + f ( u , v ) f ( w , z ) ) ) χ ( t 2 ( max ( 1 4 ( | x ( s ) u ( s ) | + | y ( s ) v ( s ) | ) ) + max ( 1 4 ( | x ( s ) w ( s ) | + | y ( s ) z ( s ) | ) ) + max ( 1 4 ( | u ( s ) w ( s ) | + | v ( s ) z ( s ) | ) ) ) ) = χ ( t 1 2 ( max ( ( | x ( s ) u ( s ) | + | y ( s ) v ( s ) | ) ) + max ( ( | x ( s ) w ( s ) | + | y ( s ) z ( s ) | ) ) + max ( ( | u ( s ) w ( s ) | + | v ( s ) z ( s ) | ) ) ) ) 1 2 ( χ ( t ( max ( | x ( s ) u ( s ) | + | x ( s ) w ( s ) | + | u ( s ) w ( s ) | ) ) ) + χ ( t ( max ( | y ( s ) v ( s ) | + | y ( s ) z ( s ) | + | v ( s ) z ( s ) | ) ) ) ) = 1 2 ( G x , u , w ( 2 t ) + G y , v , z ( 2 t ) ) 1 2 ( g x , u , w ( 2 t ) + g y , v , z ( 2 t ) ) .
  Case 2. Let
g f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) = min { G f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) , G A f ( x , y ) , A f ( u , v ) , A f ( w , z ) ( t ) } = G A f ( x , y ) , A f ( u , v ) , A f ( w , z ) ( t ) .
By A x = x 2 , we have
g f ( x , y ) , f ( u , v ) , f ( w , z ) ( t ) = G A f ( x , y ) , A f ( u , v ) , A f ( w , z ) ( t ) = χ ( t 2 1 2 ( f ( x , y ) f ( u , v ) + f ( x , y ) f ( w , z ) + f ( u , v ) f ( w , z ) ) ) χ ( t 2 ( f ( x , y ) f ( u , v ) + f ( x , y ) f ( w , z ) + f ( u , v ) f ( w , z ) ) ) χ ( t 2 ( max ( 1 4 ( | x ( s ) u ( s ) | + | y ( s ) v ( s ) | ) ) + max ( 1 4 ( | x ( s ) w ( s ) | + | y ( s ) z ( s ) | ) ) + max ( 1 4 ( | u ( s ) w ( s ) | + | v ( s ) z ( s ) | ) ) ) ) = χ ( t 1 2 ( max ( ( | x ( s ) u ( s ) | + | y ( s ) v ( s ) | ) ) + max ( ( | x ( s ) w ( s ) | + | y ( s ) z ( s ) | ) ) + max ( ( | u ( s ) w ( s ) | + | v ( s ) z ( s ) | ) ) ) ) 1 2 ( χ ( t ( max ( | x ( s ) u ( s ) | + | x ( s ) w ( s ) | + | u ( s ) w ( s ) | ) ) ) + χ ( t ( max ( | y ( s ) v ( s ) | + | y ( s ) z ( s ) | + | v ( s ) z ( s ) | ) ) ) ) = 1 2 ( G x , u , w ( 2 t ) + G y , v , z ( 2 t ) ) 1 2 ( g x , u , w ( 2 t ) + g y , v , z ( 2 t ) )
for all x , y , z , u , v , w C ( I , R ) . Therefore, by Theorem 2 with k = 1 2 for all x , y , z , u , v , w C ( I , R ) and t > 0 , we deduce that the operator f has a coupled fixed point which is the solution of the system of the integral equations. □

4. Conclusions

The new concept of e-distance, which is a generalization of r-distance in PGM space has been introduced. Moreover, some of properties of e-distance have been discussed. In addition, we obtained several new coupled fixed point results. Ultimately, to illustrate the usability of the main theorem, the existence of a solution for a system of integral equations is proved.

Author Contributions

All authors contributed equally and significantly in writing this paper. All authors have read and agree to the published version of the manuscript.

Funding

The authors are very grateful to the Basque Government by its support through Grant IT1207-19.

Acknowledgments

The first and the second authors are grateful to the Research Council of Shahid Chamran University of Ahvaz for financial support (Grant Number: SCU.MM99.25894). Moreover, the authors are very grateful to the Basque Government by its support through Grant IT1207-19.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Menger, K. Statistical metrics. Proc. Natl. Acad. Sci. USA 1942, 28, 535–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Sehgal, V.M. Some Fixed Point Theorems in Functional Analysis and Probability. Ph.D. Dissertation, Wayne State University, Detroit, MI, USA, 1966. [Google Scholar]
  3. Sehgal, V.M.; Bharucha-Reid, A.T. Fixed points of contraction mappings on probabilistic metric spaces. Math. Syst. Theory 1972, 6, 97–102. [Google Scholar] [CrossRef]
  4. Saadati, R.; O’Regan, D.; Vaezpour, S.M.; Kim, J.K. Generalized distance and common fixed point theorems in Menger probabilistic metric spaces. Bull. Iran. Math. Soc. 2009, 35, 97–117. [Google Scholar]
  5. Hadzic, O.; Pap, E. Fixed Point Theory in Probabilistic Metric Spaces; Kluwer Academic: Dordrecht, The Netherlands, 2001. [Google Scholar]
  6. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 6, 289–297. [Google Scholar]
  7. Zhou, C.; Wang, S.; Ćirić, L.; Alsulami, S. Generalized probabilistic metric spaces and fixed point theorems. Fixed Point Theory Appl. 2014, 2014, 91. [Google Scholar] [CrossRef] [Green Version]
  8. Tiwari, V.; Som, T. Fixed points for φ-contraction in Menger probabilistic generalized metric spaces. Annals. Fuzzy Math. Inform. 2017, 14, 393–405. [Google Scholar]
  9. Wang, G.; Zhu, C.; Wu, Z. Some new coupled fixed point theorems in partially ordered complete Menger probabilistic G-metric spaces. J. Comput. Anal. Appl. 2019, 27, 326–344. [Google Scholar]
  10. Karapinar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Func. Space 2018, 2018, 3264620. [Google Scholar] [CrossRef] [Green Version]
  11. Ran, A.C.M.; Reurings, M.C.B. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Am. Math. Soc. 2004, 132, 1435–1443. [Google Scholar] [CrossRef]
  12. Bhaskar, T.G.; Lakshmikantham, V. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 2006, 65, 1379–1393. [Google Scholar] [CrossRef]
  13. Petrusel, A.; Rus, I.A. Fixed point theory in terms of a metric and of an order relation. Fixed Point Theory 2019, 20, 601–622. [Google Scholar] [CrossRef]
  14. Soleimani Rad, G.; Shukla, S.; Rahimi, H. Some relations between n-tuple fixed point and fixed point results. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Matemáticas 2015, 109, 471–481. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Lotfali Ghasab, E.; Majani, H.; De la Sen, M.; Soleimani Rad, G. e-Distance in Menger PGM Spaces with an Application. Axioms 2021, 10, 3. https://doi.org/10.3390/axioms10010003

AMA Style

Lotfali Ghasab E, Majani H, De la Sen M, Soleimani Rad G. e-Distance in Menger PGM Spaces with an Application. Axioms. 2021; 10(1):3. https://doi.org/10.3390/axioms10010003

Chicago/Turabian Style

Lotfali Ghasab, Ehsan, Hamid Majani, Manuel De la Sen, and Ghasem Soleimani Rad. 2021. "e-Distance in Menger PGM Spaces with an Application" Axioms 10, no. 1: 3. https://doi.org/10.3390/axioms10010003

APA Style

Lotfali Ghasab, E., Majani, H., De la Sen, M., & Soleimani Rad, G. (2021). e-Distance in Menger PGM Spaces with an Application. Axioms, 10(1), 3. https://doi.org/10.3390/axioms10010003

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop