Modelling Crop Pattern Changes and Water Resources Exploitation: A Case Study
Abstract
:1. Introduction
2. Study Area
2.1. Overview
2.2. Variations of Crop Areas and Irrigation Requirement
3. Materials and Methods
3.1. Framework
3.2. Description of Main Drivers
3.2.1. Surface Water (SW) Stress Index
3.2.2. Market Price and Crop Yield
3.2.3. Change in the Structure and Intensity of Subsidies
4. Results
4.1. Development of Interpretative Models
4.2. Parameterization of Models Components
4.2.1. Multi-Regression Models (MRM)-Tomato Parameterization
4.2.2. Multi-Regression Models (MRM)-Wheat Parameterization
4.3. Validation
4.4. Sensitivity Analysis to Evaluate the Relative Influence of Area Variability Drivers
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2012, 327, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A. Global Consequences of Land Use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. The State of the World’s Land and Water Resources for Food and Agriculture; FAO and Earthscan: New York, NY, USA, 2011; pp. 3–5. [Google Scholar]
- Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater depletion embedded in international food trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef] [PubMed]
- Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560. [Google Scholar] [CrossRef]
- Wiggering, H.; Steinhardt, U. A conceptual model for site-specific agricultural land-use. Ecol. Model. 2015, 295, 42–46. [Google Scholar] [CrossRef]
- Borrell, B.; Hubbard, L. Global Economic Effects of the EU Common Agricultural Policy. Econ. Aff. 2000, 20, 18–26. [Google Scholar] [CrossRef]
- Barnes, A.; Sutherland, L.; Toma, L.; Matthews, K.; Thomson, S. The effect of the Common Agricultural Policy reforms on intentions towards food production: Evidence from livestock farmers. Land Use Policy 2016, 50, 548–558. [Google Scholar] [CrossRef]
- Giannoccaro, G.; Berbel, J. Influence of the Common Agricultural Policy on the farmer’s intended decision on water use. Span. J. Agric. Res. 2011, 9, 1021–1034. [Google Scholar] [CrossRef]
- Portoghese, I.; D’Agostino, D.; Giordano, R.; Scardigno, A.; Apollonio, C.; Vurro, M. An integrated modelling tool to evaluate the acceptability of irrigation constraint measures for groundwater protection. Environ. Model. Softw. 2013, 46, 90–103. [Google Scholar] [CrossRef]
- Giordano, R.; D’Agostino, D.; Apollonio, C.; Scardigno, A.; Pagano, A.; Portoghese, I.; Lamaddalena, N.; Piccinni, A.F.; Vurro, M. Evaluating acceptability of groundwater protection measures under different agricultural policies. Agric. Water Manag. 2015, 147, 54–66. [Google Scholar] [CrossRef]
- Perry, C.; Steduto, P. Does Improved Irrigation Technology Save Water? FAO: Cairo, Egypt, 2017; pp. 36–39. [Google Scholar]
- Wijinands, F.W.T. Crop rotation in organic farming: Theory and practice. In Designing and Testing Crop Rotations for Organic Farming, Proceedings from an International Workshop; Danish Research Centre for Organic Farming: Tjele, Denmark, 1999; pp. 21–35. [Google Scholar]
- Stone, N.D.; Buick, R.D.; Roach, J.W.; Scheckler, R.K.; Rupani, R. The planning problem in agriculture: Farm-level crop rotation planning as an example. AI Appl. 1992, 6, 59–75. [Google Scholar]
- Rounsevell, M.D.A.; Annetts, J.E.; Audsley, E.; Mayr, T.; Reginster, I. Modelling the spatial distribution of agricultural land use at theregional scale. Agric. Ecosyst. Environ. 2003, 95, 465–479. [Google Scholar] [CrossRef]
- Dury, J.; Schaller, N.; Garcia, F.; Reynaud, A.; Bergez, J.E. Models to support cropping plan and crop rotation decisions. Agron. Sustain. Dev. 2012, 32, 567–580. [Google Scholar] [CrossRef]
- Winder, N.; Jeffrey, P.; Lemon, M. Simulation of crop choice dynamics: An application of nested Master-Equation models. Étud. Rech. Syst. Agraires Dév. 1998, 31, 175–189. Available online: http://prodinra.inra.fr/ft?id=3E5499F0-FF3D-40A2–800F-9BA042BF8226 (accessed on 20 June 2017).
- Holt, M.T. A linear approximate acreage allocation model. J. Agric. Resour. Econ. 1999, 24, 383–397. Available online: http://www.jstor.org/stable/40987029 (accessed on 20 June 2017).
- Masciopinto, C. Pumping-well data for conditioning the realization of the fracture aperture field in groundwater flow models. J. Hydrol. 2005, 309, 210–228. [Google Scholar] [CrossRef]
- Portoghese, I.; Vurro, M.; Lopez, A. Managing Water Resources under Climate Uncertainty; Springer International Publishing: Cham, Switzerland, 2015; pp. 177–195. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Istat Census 2010. Available online: http://www.istat.it/it/censimento-permanente/censimenti-precedenti/agricoltura/agricoltura-2010 (accessed on 10 December 2016).
- Lamaddalena, N. Water Management for Drought Mitigation in the Mediterranean; CIHEAM: Bari, Italy, 2004; pp. 245–265. [Google Scholar]
- Giannoccaro, G.; Prosperi, M.; Zanni, G. Economic effects of legislative framework changes in groundwater use rights for irrigation. Water 2011, 3, 906–922. [Google Scholar] [CrossRef]
- Polemio, M.; Casarano, D.; Limoni, P.P. Apulian coastal aquifers and management criteria. In Proceedings of the SWIM 21–21st Salt Water Intrusion Meeting, Azores, Portugal, 21–26 June 2010; Available online: http://www.earth-prints.org/handle/2122/6151 (accessed on 12 May 2017).
- Guyennon, N.; Romano, E.; Portoghese, I. Long-term climate sensitivity of an integrated water supply system: The role of irrigation. Sci. Total Environ. 2016, 565, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Istat Database. Available online: http://dati.istat.it/ (accessed on 20 May 2016).
- Ismea Database. Available online: http://www.ismeamercati.it (accessed on 19 December 2016).
- Zingaro, D.; Portoghese, I.; Pagano, A.; Giordano, R.; Vurro, M. Assessing groundwater use in irrigation districts with multiple resources (MIGRAD). In Proceedings of the 10th World Congress of EWRA on Water Resources and Environment “Panta Rhei”, Athens, Greece, 5–9 July 2017; pp. 1957–1963. [Google Scholar]
- Giordano, R.; Brugnach, M.; Pluchinotta, I. Ambiguity in Problem Framing as a Barrier to Collective Actions: Some Hints from Groundwater Protection Policy in the Apulia Region. Group Decis. Negot. 2016, 1–22. [Google Scholar] [CrossRef]
- Verburg, P.H.; de Koning, G.H.J.; Kok, K.; Veldkamp, A.; Bouma, J. A spatial explicit allocation procedure for modelling the pattern of land use change based upon actual land use. Ecol. Model. 1999, 116, 45–61. [Google Scholar] [CrossRef]
- Pagano, A.; Pluchinotta, I.; Giordano, R.; Vurro, M. Drinking water supply in resilient cities: Notes from L’Aquila earthquake case study. Sustain. Cities Soc. 2017, 28, 435–449. [Google Scholar] [CrossRef]
- Doherty, J. Water Down under 94: Preprints of Papers, Adelaide, South Australia; Institution of Engineers: Barton, Australia, 1994; pp. 551–554. [Google Scholar]
- Pianosi, F.; Beven, K.; Freer, J.; Hall, J.W.; Rougier, J.; Stephenson, D.B.; Wagener, T. Sensitivity analysis of environmental models: A systematic review with practical workflow. Environ. Model. Softw. 2016, 79, 214–232. [Google Scholar] [CrossRef] [Green Version]
- Saltelli, A.; Ratto, M.; Andres, T. Global Sensitivity Analysis: The Primer; John Wiley & Sons Ltd.: Chichester, UK, 2008; pp. 1–9. [Google Scholar]
- Campbell, D.J.; Lusch, D.P.; Smucker, T.A.; Wangui, E.E. Multiple methods in the study of driving forces of land use and land cover change: A case study of SE Kajiado District, Kenya. Hum. Ecol. 2005, 33, 763–794. [Google Scholar] [CrossRef]
- Barbier, E.B. The economic determinants of land degradation in developing countries. Philos. Trans. R. Soc. B Biol. Sci. 1997, 352, 891–899. [Google Scholar] [CrossRef]
- Ventrella, D.; Giglio, L.; Charfeddine, M.; Lopez, R.; Castellini, M.; Sollitto, D.; Castrignanò, A.; Fornaro, F. Climate change impact on crop rotations of winter durum wheat and tomato in southern Italy: Yield analysis and soil fertility. Ital. J. Agron. 2012, 7, 100–108. [Google Scholar] [CrossRef]
- Terra e Vita. Available online: http://www.terraevita.it/il-pomodoro-da-industria-conviene-ancora/ (accessed on 15 September 2016).
- Cantore, N.; Kennan, J.; Page, S. CAP Reform and Development Introduction, Reform Options and Suggestions for Further Research; Overseas Development Institute: London, UK, 2011. [Google Scholar]
- Allen, B.; Hart, K. Meeting the EU’s environmental challenges through the CAP—How do the reforms measure up? Asp. Appl. Biol. 2013, 118, 9–22. [Google Scholar]
- Arfini, F.; Donati, M.; Petriccione, G.; Solazzo, R. An Impact Assessment of the Future CAP Reform on the Italian Tomato Sector. In Proceedings of the 109th Seminar EAAE “The CAP after the Fischler Reform: National Implementations, Impact Assessment and the Agenda for Future Reforms”, Viterbo, Italy, 20–21 November 2008; pp. 1–24. [Google Scholar]
- Terra e Vita. Available online: http://www.terraevita.it/pomodoro-industria-al-cospetto-della-pac/ (accessed on 10 October 2016).
- Donati, M.; Zuppiroli, M. Valutazione dell’impatto della Nuova Politica Agricola Comune sulla produzione del grano duro nelle regioni italiane. PAGRI 2003, 3, 21–50. [Google Scholar]
- Cacchiarelli, L. La Trasmissione dei Prezzi e L’esercizio del Potere di Mercato Nella Filiera Cerealicola-Molitoria-Pastaria tra Riforma PAC ed Eventi Congiunturali. Ph.D. Thesis, Università Degli Studi Della Tuscia di Viterbo, Viterbo, Italy, 17 June 2014. [Google Scholar]
- Ciliberti, S.; Frascarelli, A. A critical assessment of the implementation of CAP 2014–2020 direct payments in Italy. Bio-Based Appl. Econ. 2015, 4, 261–277. [Google Scholar] [CrossRef]
- Solazzo, R.; Donati, M.; Arfini, F.; Petriccione, G. A PMP model for the impact assessment of the Common Agricultural Policy reform 2014–2020 on the Italian tomato sector. New Medit 2014, 13, 9–19. [Google Scholar]
- Cortignani, R.; Severini, S. The impact of reforming the Common Agricultural Policy on the sustainability of the irrigated area of Central Italy. An empirical assessment by means of a Positive Mathematical Programming model. In Proceedings of the 120th EAAE Seminar: “External Cost of Farming Activities: Economic Evaluation, Risk Considerations, Environmental Repercussions and Regulatory Framework”, Chania, Greece, 2–4 September 2010. [Google Scholar]
- Castañeda-Vera, A.; Garrido, A. Evaluation of risk management tools for stabilising farm income under CAP 2014–2020. Econ. Agrar. Recur. Nat. 2017, 17, 03–23. [Google Scholar] [CrossRef]
- Siad, S.; Gioia, A.; Hoogenboom, G.; Iacobellis, V.; Novelli, A.; Tarantino, E.; Zdruli, P. Durum Wheat Cover Analysis in the Scope of Policy and Market Price Changes: A Case Study in Southern Italy. Agriculture 2017, 7, 12. [Google Scholar] [CrossRef]
Parameters | MRM-T | MRM-W | |||||
---|---|---|---|---|---|---|---|
2000–2010 | 2011–2014 | 2000–2014 | |||||
Estimated Value | 95% Confidence Limits | Estimated Value | Estimated Value | 95% Confidence Limits | |||
Lower Limit | Upper Limit | Lower Limit | Upper Limit | ||||
cS | 3.80 × 10−4 | 7.56 × 10−5 | 6.85 × 10−4 | 0 | 1.58 × 10−3 | −1.67 × 10−3 | 4.84 × 10−3 |
cM | 1.15 × 10−1 | 3.43 × 10−1 | 5.72 × 10−1 | 9.35 × 10−3 | 1.91 × 10−3 | −1.79 × 10−2 | 2.17 × 10−2 |
cY | 0 | 0 | 0 | 9.50 × 10−4 | 1.02 × 10−3 | −2.04 × 10−2 | 2.24 × 10−2 |
cSI | 4.79 × 10−1 | 2.28 × 10−1 | 7.32 × 10−1 | 4.79 × 10−1 | - | - | - |
ES | 9.68 × 10−1 | 7.73 × 10−1 | 1.162 | 1 | 1.057 | −2.50 × 10−2 | 2.311 |
EM | 7.15 × 10−1 | −9.86 × 10−1 | 2.416 | 8.84 × 10−1 | 9.97 × 10−1 | −9.85 × 10−1 | 2.981 |
EY | 1 | 1 | 1 | 1.004 | 9.99 × 10−1 | −1.253 | 3.251 |
ESI | 3.805 | −6.233 | 13.843 | 3.805 | - | - | - |
Drivers | Coupled | Decoupled | ||||
---|---|---|---|---|---|---|
Regular | Intermediate | Drought | Regular | Intermediate | Drought | |
S | 54% | 57% | 41% | 0% 2 | 0% 2 | 0% 2 |
M | 46% | 40% | 33% | 8% | 7% | 4% |
SI | 0% | 3% | 26% | 0% | 3% | 36% |
Y | 0% 1 | 0% 1 | 0% 1 | 92% | 90% | 60% |
Drivers | Regular | Intermediate | Drought | Average |
---|---|---|---|---|
S | 91% | 94% | 92% | 92.3% |
M | 5% | 3% | 5% | 4.3% |
Y | 4% | 3% | 3% | 3.3% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zingaro, D.; Portoghese, I.; Giannoccaro, G. Modelling Crop Pattern Changes and Water Resources Exploitation: A Case Study. Water 2017, 9, 685. https://doi.org/10.3390/w9090685
Zingaro D, Portoghese I, Giannoccaro G. Modelling Crop Pattern Changes and Water Resources Exploitation: A Case Study. Water. 2017; 9(9):685. https://doi.org/10.3390/w9090685
Chicago/Turabian StyleZingaro, Donato, Ivan Portoghese, and Giacomo Giannoccaro. 2017. "Modelling Crop Pattern Changes and Water Resources Exploitation: A Case Study" Water 9, no. 9: 685. https://doi.org/10.3390/w9090685
APA StyleZingaro, D., Portoghese, I., & Giannoccaro, G. (2017). Modelling Crop Pattern Changes and Water Resources Exploitation: A Case Study. Water, 9(9), 685. https://doi.org/10.3390/w9090685