Spatial and Seasonal Surface Water Quality Assessment in a Tropical Urban Catchment: Burío River, Costa Rica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Strategy and Analytical Procedure
2.3. Data Analyses
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sun, W.; Xia, C.; Xu, M.; Guo, J.; Sun, G. Application of modified water quality indices as indicators to assess the spatial and temporal trends of water quality in the Dongjiang River. Ecol. Indic. 2016, 66, 306–312. [Google Scholar] [CrossRef]
- Boeder, M.; Chang, H. Multi-scale analysis of oxygen demand trends in an urbanizing Oregon watershed, USA. J. Environ. Manag. 2008, 87, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Duh, J.D.; Shandas, V.; Chang, H.; George, L.A. Rates of urbanisation and the resiliency of air and water quality. Sci. Total Environ. 2008, 400, 238–256. [Google Scholar] [CrossRef] [PubMed]
- Suthar, S.; Sharma, J.; Chabukdhara, M.; Nema, A.K. Water quality assessment of river Hindon at Ghaziabad, India: Impact of industrial and urban wastewater. Environ. Monit. Assess. 2010, 165, 103–112. [Google Scholar] [CrossRef] [PubMed]
- United Nations World Water Assessment Programm (WWAP). The United Nations World Water Development Report 2016; Technical Report; UNESCO: Paris, France, 2016. [Google Scholar]
- Zeilhofer, P.; Lima, E.B.N.R.; Lima, G.A.R. Spatial patterns of water quality in the Cuiabá River Basin, Central Brazil. Environ. Monit. Assess. 2006, 123, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; He, B.; Nover, D.; Yang, G.; Chen, W.; Meng, H.; Zou, S.; Liu, C. Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods. Sustainability 2016, 8, 133. [Google Scholar] [CrossRef]
- Behmel, S.; Damour, M.; Ludwig, R.; Rodriguez, M.J. Water quality monitoring strategies—A review and future perspectives. Sci. Total Environ. 2016, 571, 1312–1329. [Google Scholar] [CrossRef] [PubMed]
- Nnane, D.E.; Ebdon, J.E.; Taylor, H.D. Integrated analysis of water quality parameters for cost-effective faecal pollution management in river catchments. Water Res. 2011, 45, 2235–2246. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, Y.; Kim, H.; Piao, W.; Kim, C. Enhanced monitoring of water quality variation in Nakdong River downstream using multivariate statistical techniques. Desalination Water Treat. 2016, 57, 12508–12517. [Google Scholar] [CrossRef]
- Warner, N.R.; Christie, C.A.; Jackson, R.B.; Vengosh, A. Impacts of shale gas wastewater disposal on water quality in western Pennsylvania. Environ. Sci. Technol. 2013, 47, 11849–11857. [Google Scholar] [CrossRef] [PubMed]
- Wunderlin, D.A.; Díaz, M.d.P.; Amé, M.V.; Pesce, S.F.; Hued, A.C.; Bistoni, M.d.l.Á. Pattern Recognition Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality. A Case Study: Suquía River Basin (Córdoba, Argentina). Water Res. 2001, 35, 2881–2894. [Google Scholar]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Sahu, N.; Yamashiki, Y. Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere 2013, 93, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Takara, K.; He, B.; Luo, P.; Nover, D.; Yamashiki, Y. Spatial and temporal trends in estimates of nutrient and suspended sediment loads in the Ishikari River, Japan, 1985 to 2010. Sci. Total Environ. 2013, 461–462, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.; Stewart, L.; Hawdon, A.; Keen, R.; Karim, F.; Kemei, J. Flood water quality and marine sediment and nutrient loads from the Tully and Murray catchments in north Queensland, Australia. Mar. Freshw. Res. 2009, 60, 1123. [Google Scholar] [CrossRef]
- Ongley, E.D. Water Quality Programs in Developing Countries. Water Int. 2001, 26, 14–23. [Google Scholar] [CrossRef]
- Giri, S.; Qiu, Z. Understanding the relationship of land uses and water quality in Twenty First Century: A review. J. Environ. Manag. 2016, 173, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Levine, C.R.; Yanai, R.D.; Lampman, G.G.; Burns, D.A.; Driscoll, C.T.; Lawrence, G.B.; Lynch, J.A.; Schoch, N. Evaluating the efficiency of environmental monitoring programs. Ecol. Indic. 2014, 39, 94–101. [Google Scholar] [CrossRef]
- Laino-Guanes, R.; González-Espinosa, M.; Ramírez-Marcial, N.; Bello-Mendoza, R.; Jiménez, F.; Casanoves, F.; Musálem-Castillejos, K. Human pressure on water quality and water yield in the upper Grijalva river basin in the Mexico-Guatemala border. Ecohydrol. Hydrobiol. 2016, 16, 149–159. [Google Scholar] [CrossRef]
- Jung, K.Y.; Lee, K.L.; Im, T.H.; Lee, I.J.; Kim, S.; Han, K.Y.; Ahn, J.M. Evaluation of water quality for the Nakdong River watershed using multivariate analysis. Environ. Technol. Innov. 2016, 5, 67–82. [Google Scholar] [CrossRef]
- Wang, Y.B.; Liu, C.W.; Liao, P.Y.; Lee, J.J. Spatial pattern assessment of river water quality: Implications of reducing the number of monitoring stations and chemical parameters. Environ. Monit. Assess. 2014, 186, 1781–1792. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Nkedi-Kizza, P.; Wu, Q.T.; Shinde, D.; Huang, C.H. Assessment of seasonal variations in surface water quality. Water Res. 2006, 40, 3800–3810. [Google Scholar] [CrossRef] [PubMed]
- Hoseinzadeh, E.; Khorsandi, H.; Wei, C.; Alipour, M. Evaluation of Aydughmush River water quality using the National Sanitation Foundation Water Quality Index (NSFWQI), River Pollution Index (RPI), and Forestry Water Quality Index (FWQI). Desalination Water Treat. 2015, 54, 2994–3002. [Google Scholar] [CrossRef]
- Onestini, M. Water Quality and Health in Poor Urban Areas of Latin America. Int. J. Water Res. Dev. 2011, 27, 219–226. [Google Scholar] [CrossRef]
- Groppo, J.D.; De Moraes, J.M.; Beduschi, C.E.; Genovez, A.M.; Martinelli, L.A. Trend analysis of water quality in some rivers with different degrees of development within the São Paulo State, Brazil. River Res. Appl. 2008, 24, 1056–1067. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). Global Water Supply and Sanitation 2000 Report; Technical Report; World Health Organisation: Geneva, Switzerland, 2000. [Google Scholar]
- Bower, K.M. Water supply and sanitation of Costa Rica. Environ. Earth Sci. 2014, 71, 107–123. [Google Scholar] [CrossRef]
- Reynolds-Vargas, J.; Fraile-Merino, J.; Hirata, R. Trends in Nitrate Concentrations and Determination of its Origin Using Stable Isotopes (18O and 15N) in Groundwater of the Western Central Valley, Costa Rica. AMBIO 2006, 35, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Instituto Meteorológico Nacional de Costa Rica. Available online: http://www.imn.ac.cr (accessed on 1 February 2017).
- Ministerio de Salud de Costa Rica. Available online: http://www.ministeriodesalud.go.cr (accessed on 15 February 2017).
- APHA; AWWA; WEF. Standard Methods for the Examination of Water & Wastewater; Standard Methods for the Examination ofWater and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Farnham, I.M.; Singh, A.K.; Stetzenbach, K.J.; Johannesson, K.H. Treatment of nondetects in multivariate analysis of groundwater geochemistry data. Chemom. Intell. Lab. Syst. 2002, 60, 265–281. [Google Scholar] [CrossRef]
- Araujo, H.A.; Cooper, A.B.; Hassan, M.A.; Venditti, J. Estimating suspended sediment concentrations in areas with limited hydrological data using a mixed-effects model. Hydrol. Process. 2012, 26, 3678–3688. [Google Scholar] [CrossRef]
- Ward, J.H. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Ouyang, Y. Evaluation of river water quality monitoring stations by principal component analysis. Water Res. 2005, 39, 2621–2635. [Google Scholar] [CrossRef] [PubMed]
- Olsen, R.L.; Chappell, R.W.; Loftis, J.C. Water quality sample collection, data treatment and results presentation for principal components analysis—Literature review and Illinois River watershed case study. Water Res. 2012, 46, 3110–3122. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, J.; Casanoves, F.; Balzarini, M.; Gonzalez, L.; Tablada, M.; Robledo, C. Infostat—Sofware Estadístico; Universidad Nacional de Córdoba: Córdoba, Argentina, 2015. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; Tozer, R.G. A water quality index- Do we dare? Water Sew. Works 1970, 117, 339–343. [Google Scholar]
- U.S. Environmental Protection Agency. Quality Criteria for Water; United States Environmental Protection Agency: Washington, DC, USA, 1986; p. 447. [Google Scholar]
- Uriarte, M.; Yackulic, C.B.; Lim, Y.; Arce-Nazario, J.A. Influence of land use on water quality in a tropical landscape: A multi-scale analysis. Landsc. Ecol. 2011, 26, 1151–1164. [Google Scholar] [CrossRef] [PubMed]
- Calvo Brenes, G.; Mora Molina, J. Contaminación fecal en varios ríos de la Gran Área Metropolitana y la Península de Osa. Tecnol. Marcha 2012, 25, 33–39. [Google Scholar] [CrossRef]
- MINAE. Reglamento para la evaluación y clasificación de la calidad de cuerpos de agua superficiales. Decreto, No. 33903. La Gaceta 2007, 178, 1–21. [Google Scholar]
- Calvo, G.; Mora, J. Evaluación y clasificación preliminar de la calidad del agua de la cuenca del río Tárcoles y el Reventazón. Tecnol. Marcha 2007, 20, 7. [Google Scholar]
- Herrera, J.; Rodríguez, S.; Rojas, J.F.; Herrera, É.; Chaves, M. Variación temporal y espacial de la calidad de las aguas superficiales en la subcuenca del río Virilla (Costa Rica) entre 2006 y 2010. Rev. Cienc. Ambient. 2013, 45, 51–62. [Google Scholar] [CrossRef]
- Mukaka, M.M. Statistics corner: A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 2012, 24, 69–71. [Google Scholar] [PubMed]
- Chapman, D. Water Quality Assessments—A Guide to Use of Biota, Sediments and Water in Enviromental Monitoring; Cambridge University Press: Cambridge, UK, 1996; Volume 1, p. 609. [Google Scholar]
- Yeomans, K.A.; Golder, P.A. The Guttman-Kaiser Criterion as a Predictor of the Number of Common Factors. J. R. Stat. Soc. Ser. D: Stat. 1982, 31, 221–229. [Google Scholar] [CrossRef]
- Cannavo, P.; Harmand, J.M.; Zeller, B.; Vaast, P.; Ramírez, J.E.; Dambrine, E. Low nitrogen use efficiency and high nitrate leaching in a highly fertilized Coffea arabica-Inga densiflora agroforestry system: A 15N labeled fertilizer study. Nutr. Cycl. Agroecosyst. 2013, 95, 377–394. [Google Scholar] [CrossRef]
Site | Temp. | pH | DO | Turbidity | TS | BOD | Nitrate | TP | Faecal Coliform |
---|---|---|---|---|---|---|---|---|---|
(C) | (%) | (NTU) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (MPN/100 mL) | ||
1-Dry | 18.7 (0.1) | 6.57 (0.01) | 79.4 (2.1) | 0.24 (2.60) | 129 (2) | 1.3 (1.6) | 5.60 (1.46) | 0.042 (0.023) | 2.3 × 10 (3.2 × 10) |
1-Wet | 18.9 (0.8) | 6.47 (0.79) | 81.9 (3.9) | 1.58 (2.59) | 105 (14) | 0.9 (0.7) | 6.79 (3.91) | 0.063 (0.025) | 4.3 × 10 (1.4 × 10) |
2-Dry | 18.3 (1.0) | 6.61 (0.80) | 46.0 (12.7) | 19.43 (14.22) | 294 (162) | 69.9 (95.2) | 0.12 (0.08) | 0.953 (0.841) | 4.6 × 10 (4.3 × 10) |
2-Wet | 18.9 (0.9) | 7.02 (0.50) | 71.8 (18.7) | 13.26 (9.61) | 186 (53) | 27.3 (15.5) | 2.24 (1.78) | 0.344 (0.252) | 1.4 × 10 (2.8 × 10) |
3-Dry | 18.8 (1.1) | 6.71 (0.88) | 35.5 (12.7) | 28.67 (23.54) | 322 (121) | 93.8 (126.9) | 0.13 (0.09) | 1.467 (1.314) | 5.2 × 10 (7.5 × 10) |
3-Wet | 19.3 (0.6) | 7.13 (0.41) | 69.7 (15.0) | 14.69 (7.14) | 203 (72) | 20.3 (18.9) | 1.87 (2.12) | 0.453 (0.329) | 6.5 × 10 (1.0 × 10) |
4-Dry | 19.3 (1.2) | 6.51 (1.20) | 22.8 (11.8) | 42.15 (48.24) | 392 (300) | 172.0 (276.8) | 0.06 (0.06) | 1.781 (1.193) | 7.8 × 10 (1.1 × 10) |
4-Wet | 19.7 (0.6) | 7.00 (0.42) | 56.7 (24.2) | 17.69 (12.03) | 211 (85) | 46.1 (25.3) | 0.93 (0.87) | 0.815 (0.511) | 5.7 × 10 (9.0 × 10) |
5-Dry | 19.6 (1.0) | 7.04 (0.73) | 53.9 (15.8) | 13.97 (10.86) | 290 (137) | 67.5 (104.1) | 1.27 (1.88) | 1.247 (1.865) | 2.7 × 10 (3.3 × 10) |
5-Wet | 20.5 (0.6) | 7.37 (0.40) | 76.1 (8.5) | 9.00 (4.92) | 214 (75) | 31.6 (33.4) | 2.93 (2.92) | 0.537 (0.538) | 2.4 × 10 (7.6 × 10) |
6-Dry | 19.9 (1.2) | 7.27 (0.56) | 53.4 (22.1) | 10.58 (9.17) | 285 (86) | 25.3 (27.3) | 1.93 (1.50) | 1.447 (1.830) | 2.9 × 10 (3.3 × 10) |
6-Wet | 20.8 (0.9) | 7.40 (0.39) | 76.6 (8.8) | 12.01 (6.94) | 258 (158) | 18.7 (13.7) | 4.33 (3.54) | 0.626 (0.536) | 2.5 × 10 (7.6 × 10) |
7-Dry | 21.5 (0.7) | 7.31 (0.50) | 76.2 (10.5) | 6.47 (4.30) | 270 (44) | 19.4 (20.0) | 11.59 (8.34) | 0.950 (0.718) | 2.8 × 10 (5.5 × 10) |
7-Wet | 22.3 (0.8) | 7.37 (0.51) | 88.0 (5.0) | 24.17 (55.34) | 277 (86) | 10.7 (10.0) | 17.11 (5.54) | 0.383 (0.238) | 2.4 × 10 (7.6 × 10) |
8-Dry | 22.0 (1.1) | 7.58 (0.56) | 87.3 (11.8) | 7.04 (3.47) | 269 (25) | 8.0 (1.2) | 13.99 (8.43) | 0.899 (0.637) | 4.0 × 10 (4.8 × 10) |
8-Wet | 23.0 (1.8) | 7.64 (0.67) | 92.8 (11.8) | 9.94 (7.27) | 243 (43) | 11.5 (8.1) | 17.68 (6.15) | 0.378 (0.237) | 4.4 × 10 (8.1 × 10) |
Parameter | Units | Dry | Wet | F(1, 7) | p-Value | ||
---|---|---|---|---|---|---|---|
Mean | SE | Mean | SE | ||||
Temp. | C | 19.8 | (0.4) | 20.4 | (0.2) | 1.63 | 0.243 |
pH | - | 6.88 | (0.25) | 7.14 | (0.21) | 1.85 | 0.216 |
DO | % | 58.4 | (3.8) | 76.5 | (2.5) | 12.82 | 0.003 * |
Turbidity | NTU | 5.37 | (1.51) | 6.17 | (1.38) | 0.16 | 0.702 |
TS | mg/L | 281 | (26) | 212 | (9) | 6.09 | 0.043 * |
BOD | mg/L | 11.2 | (1.4) | 10.0 | (1.3) | 0.28 | 0.619 |
Nitrate | mg/L | 4.49 | (0.78) | 6.73 | (0.53) | 6.37 | 0.040 * |
TP | mg/L | 0.994 | (0.216) | 0.422 | (0.135) | 4.32 | 0.076 |
Faecal Coliform | MPN/100 mL | 2.5 × 10 | (4.26) | 4.9 × 10 | (2.57) | 0.19 | 0.678 |
Parameter | Temp. | pH | DO | Turbidity | TS | BOD | Nitrate | TP | Faecal Coliform |
---|---|---|---|---|---|---|---|---|---|
Temp. | 1.00 | ||||||||
pH | 0.43 * | 1.00 | |||||||
DO | 0.48 * | 0.21 * | 1.00 | ||||||
Turbidity | −0.14 | −0.19 | −0.32 * | 1.00 | |||||
TS | 0.22 * | 0.34 * | −0.36 * | 0.31* | 1.00 | ||||
BOD | −0.25 * | −0.09 | −0.49 * | 0.60 * | 0.42 * | 1.00 | |||
Nitrate | 0.54 * | 0.19 | 0.79 * | −0.46 * | −0.19 | −0.58 * | 1.00 | ||
TP | 0.21 * | 0.33 * | −0.46 * | 0.23 | 0.60 * | 0.32 * | −0.33 | 1.00 | |
Faecal Coliform | −0.05 | 0.18 | −0.21 * | 0.35 * | 0.18 | 0.31 * | −0.36 * | 0.16 | 1.00 |
Parameter | PC1 | PC2 |
---|---|---|
Temp. | 0.29 | 0.42 |
pH | 0.17 | 0.47 |
DO | 0.49 | 0.04 |
Turbidity | −0.34 | 0.30 |
TS | −0.13 | 0.52 |
BOD | −0.46 | 0.10 |
Nitrate | 0.41 | 0.22 |
TP | −0.36 | 0.34 |
Faecal coliform | 0.12 | 0.24 |
Eigenvalue | 4.19 | 3.34 |
% Total variance | 47 | 37 |
% Cumulate | 47 | 84 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mena-Rivera, L.; Salgado-Silva, V.; Benavides-Benavides, C.; Coto-Campos, J.M.; Swinscoe, T.H.A. Spatial and Seasonal Surface Water Quality Assessment in a Tropical Urban Catchment: Burío River, Costa Rica. Water 2017, 9, 558. https://doi.org/10.3390/w9080558
Mena-Rivera L, Salgado-Silva V, Benavides-Benavides C, Coto-Campos JM, Swinscoe THA. Spatial and Seasonal Surface Water Quality Assessment in a Tropical Urban Catchment: Burío River, Costa Rica. Water. 2017; 9(8):558. https://doi.org/10.3390/w9080558
Chicago/Turabian StyleMena-Rivera, Leonardo, Viviana Salgado-Silva, Cristina Benavides-Benavides, Juana M. Coto-Campos, and Thomas H. A. Swinscoe. 2017. "Spatial and Seasonal Surface Water Quality Assessment in a Tropical Urban Catchment: Burío River, Costa Rica" Water 9, no. 8: 558. https://doi.org/10.3390/w9080558