Next Article in Journal
Substrate Composition and Depth Affect Soil Moisture Behavior and Plant-Soil Relationship on Mediterranean Extensive Green Roofs
Previous Article in Journal
Spatial and Temporal Dynamics of Potentially Toxic Cyanobacteria in the Riverine Region of a Temperate Estuarine System Altered by Weirs
Article Menu
Issue 11 (November) cover image

Export Article

Open AccessArticle
Water 2017, 9(11), 816;

Analysis of Coastline Extraction from Landsat-8 OLI Imagery

School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China
Key Laboratory of Geographic Information System, Ministry of Education, Wuhan University, Wuhan 430079, China
Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China
Author to whom correspondence should be addressed.
Received: 15 September 2017 / Revised: 18 October 2017 / Accepted: 21 October 2017 / Published: 25 October 2017
Full-Text   |   PDF [14512 KB, uploaded 25 October 2017]   |  


Coastline extraction is a fundamental work for coastal resource management, coastal environmental protection and coastal sustainable development. Due to the free access and long-term record, Landsat series images have the potential to be used for coastline extraction. However, dynamic features of different types of coastlines (e.g., rocky, sandy, artificial), caused by sea level fluctuation from tidal, storm and reclamation, make it difficult to be accurately extracted with coarse spatial resolution, e.g., 30 m, of Landsat images. To access this problem, we analyze the performance of coastline extraction by integrating downscaling, pansharpening and water index approaches in increasing the accuracy of coastline extraction from the latest Landsat-8 Operational Land Imager (OLI) imagery. In order to prove the availability of the proposed method, we designed three strategies: (1) Strategy 1 uses the traditional water index method to extract coastline directly from original 30 m Landsat-8 OLI multispectral (MS) image; (2) Strategy 2 extracts coastlines from 15 m fused MS images generated by integrating 15 m panchromatic (PAN) band and 30 m MS image with ten pansharpening algorithms; (3) Strategy 3 first downscales the PAN band to a finer spatial resolution (e.g., 7.5 m) band, and then extracts coastlines from pansharpened MS images generated by integrating downscaled spatial resolution PAN band and 30 m MS image with ten pansharpening algorithms. Using the coastline extracted from ZiYuan-3 (ZY-3) 5.8 m MS image as reference, accuracies of coastlines extracted from MS images in three strategies were validated visually and quantitatively. The results show that, compared with coastline extracted directly from 30 m Landsat-8 MS image (strategy 1), strategy 3 achieves the best accuracies with optimal mean net shoreline movement (MNSM) of −2.54 m and optimal mean absolute difference (MAD) of 11.26 m, followed by coastlines extracted in strategy 2 with optimal MNSM of −4.23 m and optimal MAD of 13.54 m. Further comparisons with single-band thresholding (Band 6), AWEI, and ISODATA also confirmed the superiority of strategy 3. For the various used pansharpening algorithms, five multiresolution analysis MRA-based pansharpening algorithms are more efficient than the component substitution CS-based pansharpening algorithms for coastline extraction from Landsat-8 OLI imagery. Among the five MRA-based fusion methods, the coastlines extracted from the fused images generated by Indusion, additive à trous wavelet transform (ATWT) and additive wavelet luminance proportional (AWLP) produced the most accurate and visually realistic representation. Therefore, pansharpening approaches can improve the accuracy of coastline extraction from Landsat-8 OLI imagery, and downscaling the PAN band to finer spatial resolution is able to further improve the coastline extraction accuracy, especially in crenulated coasts. View Full-Text
Keywords: remote sensing; coastline extraction; Landsat-8 OLI; downscaling; pansharpening; water index remote sensing; coastline extraction; Landsat-8 OLI; downscaling; pansharpening; water index

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Liu, Y.; Wang, X.; Ling, F.; Xu, S.; Wang, C. Analysis of Coastline Extraction from Landsat-8 OLI Imagery. Water 2017, 9, 816.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top