Using a Modified Lane’s Relation in Local Bed Scouring Studies in the Laboratory Channel
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Modified Lane's Relation
2.2. Aim and Scope of Research
2.3. Description of the Test Stand
2.4. Methodology and the Scope of the Study
Number of Measurement | Qw | H | q | T | ν | Vs | t | zmax | |
---|---|---|---|---|---|---|---|---|---|
(m3·s−1) | (m) | (m3·s−1∙m−2) | (°C) | (1×10−6∙m2·s−1) | (-) | (m3) | (h) | (cm) | |
1 | 0.020 | 0.10 | 0.003 | 16.8 | 1.086 | 14.72 | 0.00153 | 7.25 | 0.42 |
2 | 0.025 | 0.10 | 0.004 | 16.5 | 1.094 | 14.65 | 0.01841 | 10.50 | 3.41 |
3 | 0.025 | 0.12 | 0.004 | 16.1 | 1.104 | 14.56 | 0.00151 | 6.50 | 0.41 |
4 | 0.030 | 0.10 | 0.005 | 16.5 | 1.094 | 14.65 | 0.03701 | 5.00 | 4.74 |
5 | 0.030 | 0.15 | 0.005 | 16.7 | 1.089 | 14.70 | 0.00151 | 6.00 | 0.47 |
6 | 0.035 | 0.12 | 0.006 | 16.3 | 1.099 | 14.61 | 0.04681 | 8.50 | 5.64 |
7 | 0.035 | 0.15 | 0.006 | 15.9 | 1.109 | 14.52 | 0.00404 | 7.50 | 2.17 |
8 | 0.040 | 0.10 | 0.007 | 16.0 | 1.107 | 14.54 | 0.09746 | 9.25 | 11.82 |
9 | 0.040 | 0.12 | 0.007 | 17.2 | 1.076 | 14.81 | 0.05500 | 10.50 | 9.28 |
10 | 0.040 | 0.15 | 0.007 | 17.0 | 1.081 | 14.77 | 0.01900 | 8.00 | 4.23 |
11 | 0.040 | 0.20 | 0.007 | 16.8 | 1.086 | 14.72 | 0.00240 | 6.00 | 0.59 |
12 | 0.043 | 0.12 | 0.007 | 16.6 | 1.091 | 14.68 | 0.06800 | 8.50 | 7.64 |
13 | 0.045 | 0.15 | 0.008 | 16.0 | 1.107 | 14.54 | 0.04500 | 8.50 | 6.29 |
3. Results and Discussion
No of Measurement | Qw | H | Qs | S | ||||
---|---|---|---|---|---|---|---|---|
(m3·s−1) | (m) | (1 × 10−6·m3·s−1) | (-) | (-) | (-) | (1 × 10−6 m3·s−1) | (1 × 10−6 m3·s−1) | |
1 | 0.020 | 0.10 | 0.059 | 14.72 | 5.80 | 0.0005 | 0.15 | 10.00 |
2 | 0.025 | 0.10 | 0.487 | 14.65 | 5.80 | 0.0007 | 1.23 | 17.50 |
3 | 0.025 | 0.12 | 0.065 | 14.56 | 4.83 | 0.0003 | 0.19 | 7.50 |
4 | 0.030 | 0.10 | 2.056 | 14.65 | 5.80 | 0.0014 | 5.19 | 42.00 |
5 | 0.030 | 0.15 | 0.070 | 14.70 | 3.87 | 0.0004 | 0.27 | 12.92 |
6 | 0.035 | 0.12 | 1.530 | 14.61 | 4.83 | 0.0010 | 4.62 | 35.00 |
7 | 0.035 | 0.15 | 0.150 | 14.52 | 3.87 | 0.0005 | 0.56 | 17.50 |
8 | 0.040 | 0.10 | 2.927 | 14.54 | 5.80 | 0.0013 | 7.34 | 52.00 |
9 | 0.040 | 0.12 | 1.455 | 14.81 | 4.83 | 0.0010 | 4.46 | 40.00 |
10 | 0.040 | 0.15 | 0.660 | 14.77 | 3.87 | 0.0009 | 2.52 | 34.46 |
11 | 0.040 | 0.20 | 0.111 | 14.72 | 2.90 | 0.0002 | 0.56 | 8.00 |
12 | 0.043 | 0.12 | 2.222 | 14.68 | 4.83 | 0.0012 | 6.75 | 51.60 |
13 | 0.045 | 0.15 | 1.471 | 14.54 | 3.87 | 0.0009 | 5.53 | 40.50 |
- -
- initial water discharge before the flood occurrence with
- -
- peak-flow water discharge with
No. of Measurement | Qw | H | zmax | Qs | Rb | Fr | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
(m3·s−1) | (m) | (m) | (1 × 10−6·m3·s−1) | (m) | (Pa) | (-) | () | (-) | (-) | (-) | |
1 | 0.020 | 0.10 | 0.0042 | 0.059 | 0.0923 | 0.45 | 0.0451 | 0.021 | 12.1 | 0.0320 | 0.35 |
2 | 0.025 | 0.10 | 0.0341 | 0.487 | 0.0923 | 0.63 | 0.0631 | 0.025 | 14.2 | 0.0328 | 0.44 |
3 | 0.025 | 0.12 | 0.0041 | 0.065 | 0.1088 | 0.32 | 0.0319 | 0.018 | 10.0 | 0.0311 | 0.33 |
4 | 0.030 | 0.10 | 0.0474 | 2.056 | 0.0923 | 1.27 | 0.1263 | 0.036 | 20.2 | 0.0345 | 0.52 |
5 | 0.030 | 0.15 | 0.0047 | 0.070 | 0.1325 | 0.52 | 0.0518 | 0.023 | 13.0 | 0.0323 | 0.28 |
6 | 0.035 | 0.12 | 0.0564 | 1.530 | 0.1088 | 1.07 | 0.1064 | 0.033 | 18.5 | 0.0341 | 0.46 |
7 | 0.035 | 0.15 | 0.0217 | 0.150 | 0.1325 | 0.65 | 0.0648 | 0.025 | 14.3 | 0.0328 | 0.33 |
8 | 0.040 | 0.10 | 0.1182 | 2.927 | 0.0923 | 1.18 | 0.1173 | 0.034 | 19.2 | 0.0343 | 0.70 |
9 | 0.040 | 0.12 | 0.0928 | 1.455 | 0.1088 | 1.07 | 0.1064 | 0.033 | 18.8 | 0.0342 | 0.53 |
10 | 0.040 | 0.15 | 0.0423 | 0.660 | 0.1325 | 1.17 | 0.1166 | 0.034 | 19.6 | 0.0344 | 0.38 |
11 | 0.040 | 0.20 | 0.0059 | 0.111 | 0.1692 | 0.33 | 0.0331 | 0.018 | 10.4 | 0.0312 | 0.25 |
12 | 0.043 | 0.12 | 0.0764 | 2.222 | 0.1088 | 1.28 | 0.1276 | 0.036 | 20.3 | 0.0345 | 0.57 |
13 | 0.045 | 0.15 | 0.0629 | 1.471 | 0.1325 | 1.17 | 0.1166 | 0.034 | 19.2 | 0.0342 | 0.43 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lane, E.W. The importance of fluvial morphology in hydraulic engineering. In Proceedings of American Society of Civil Engineers, New York, NY, USA, July 1955; pp. 1–17.
- Aderibigbe, O.; Rajaratnam, N. Effect of sediment gradation on erosion by plane turbulent wall jets. J. Hydraul. Eng. 1998, 124, 1034–1042. [Google Scholar] [CrossRef]
- Gaudio, R.; Marion, A. Time evolution of scouring downstream of bed sills. J. Hydraul. Res. 2003, 41, 271–284. [Google Scholar] [CrossRef]
- Lenzi, M.A.; Marion, A.; Comiti, F.; Gaudio, R. Local scouring in low and high gradient streams at bed sills. J. Hydraul. Res. 2002, 40, 731–739. [Google Scholar] [CrossRef]
- Melville, B. The physics of local scour at bridge piers. In Proceedings of the Fourth International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008.
- Dust, D.; Wohl, E. Conceptual model for complex river responses using an expanded Lane’s relation. Geomorphology 2012, 139–140, 109–121. [Google Scholar] [CrossRef]
- Huang, H.Q.; Liu, X.; Nanson, G.C. Commentary on a “conceptual model for complex river responses using an expanded Lane’s diagram by David Dust and Ellen Wohl”. Geomorphology 2014, 209, 140–142. [Google Scholar] [CrossRef]
- Schumm, S.A. Fluvial System; Wiley-Interscience: New York, NY, USA, 1977. [Google Scholar]
- Barbhuiya, A.K.; Dey, S. Local scour at abutments: A review. Sadhana 2004, 29, 449–476. [Google Scholar] [CrossRef]
- Chabert, J.; Engeldinger, P. Etude des Affouillements Autour des Piles des Ponts; Laboratoire d’Hydraulique: Chatou, France, 1956. [Google Scholar]
- Brookes, A. Channelized Rivers—Perspectives for Environmental Management; John Wiley and Sons: Chichester, UK, 1988. [Google Scholar]
- Church, M. Channel morphology and typology. In The River Handbook; Calow, P., Petts, G.E., Eds.; Blecwell; Scientific Publications: Oxford, UK, 1992; Volume 1. [Google Scholar]
- Hickin, E.J. The analysis of river-planform responses to changes in discharge. In River Channel Changes; Gregory, K.J., Ed.; John Wiley and Sons: Chichester, UK, 1977. [Google Scholar]
- Werburton, J.; Danks, M.; Wishart, D. Stability of an upland gravel-bed stream Swinhope Burn, Northern England. Catena 2002, 49, 309–329. [Google Scholar] [CrossRef]
- Van Rijn, L.C. Principles of Sediment Transport in Rivers, Estuaries and Castal Seas; Aqua Publications: Amsterdam, The Netherlands, 1993. [Google Scholar]
- Nowak, P. Results of Specific Density Calculations for Sand and Crushed Aggregate; The Laboratory of Chemistry and Water and Wastewater Technology, Warsaw University of Life Sciences (WULS-SGGW): Warszawa, Poland, 2009. (In Polish) [Google Scholar]
- Popek, Z. Bedload transport conditions in small lowland river. Treatises and Monographs. WULS-SGGW, Warsaw (in Polish) Schumm, S.A. 1969: River metamorphosis. J. Hydraul. Div. American Soc. Civ. Eng. 2006, 95, 255–273. [Google Scholar]
- Horton, R. Separate roughness coefficients for channel bottom and sides. Eng. News Rec. 1933, 111, 652–653. [Google Scholar]
- Indlekofer, H. Überlagerung von Rauhigkeitseinflüssen beim Abfluß in Offenen Gerinnen; Mitteilungen Institut für Wasserbau und Wasserwirtschaft, RWTH Aachen: Heft, Germany, 1981; Volume 37, pp. 105–145. [Google Scholar]
- Kubrak, J.; Nachlik, E. Hydraulic Basics of River Channels Bandwidth Calculations; Warsaw University of Life Sciences: Warszawa, Poland, 2003. (In Polish) [Google Scholar]
- Bollrich, G.; Preißler, G. Hydromechanik, Band 1; Verlag für Bauwesen: Berlin, Germany, 1992. [Google Scholar]
- Zanke, U. Grundlagen der Sedimentbewegung; Springer: Berlin, Germany, 1982. [Google Scholar]
- Urbański, J.; Hejduk, L. The analysis of local scour size formed after flood event. Monografie Komitetu Gospodarki Wodnej 2014, XX, 389–399. (In Polish) [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiraga, M.; Popek, Z. Using a Modified Lane’s Relation in Local Bed Scouring Studies in the Laboratory Channel. Water 2016, 8, 16. https://doi.org/10.3390/w8010016
Kiraga M, Popek Z. Using a Modified Lane’s Relation in Local Bed Scouring Studies in the Laboratory Channel. Water. 2016; 8(1):16. https://doi.org/10.3390/w8010016
Chicago/Turabian StyleKiraga, Marta, and Zbigniew Popek. 2016. "Using a Modified Lane’s Relation in Local Bed Scouring Studies in the Laboratory Channel" Water 8, no. 1: 16. https://doi.org/10.3390/w8010016
APA StyleKiraga, M., & Popek, Z. (2016). Using a Modified Lane’s Relation in Local Bed Scouring Studies in the Laboratory Channel. Water, 8(1), 16. https://doi.org/10.3390/w8010016