Comparative Analysis of Water Quality between the Runoff Entrance and Middle of Recycling Irrigation Reservoirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
Nursery | Location | Reservoir | Surface Area, m2 | Average Depth *, m | Distance between the Middle and the Entrance, m |
---|---|---|---|---|---|
VA1 | Eastern VA (36°46′03.2″ N, 76°38′21.3″ W) | VA12 | 8100 | 2.28 | 51 |
VA2 | Central VA (37°46′52.3″ N, 77°27′28.9″ W) | VA21 | 8100 | 3.78 | 42 |
MD1 | Northern MD (39°29′28.9″ N, 75°47′18.0″ W) | MD11 | 17,000 | 1.80 | 70 |
MD2 | Central MD (38°57′05.4″ N, 76°39′04.1″ W) | MD21 | 6100 | 2.36 | 76 |
2.2. Data Collection
2.3. Data Analysis
2.3.1. Water Quality Range in RIRs
2.3.2. Water Quality Difference and Analysis of Variance (ANOVA)
2.3.3. Cluster Analysis
3. Results
3.1. Water Quality Ranges in RIRs
Reservoirs | Sampling Points | Depths | T °C | DO mg/L | pH | Chla µg/L | ORP mv | EC dS/m | Salinity ppt | TDS g/L | Turbidity NTU |
---|---|---|---|---|---|---|---|---|---|---|---|
VA12 | Entrance | Surface | 19.4 ± 9.0 | 10.8 ± 2.6 | 7.4 ± 1.1 | 53.3 ± 46.9 | 307.5 ± 84.2 | 0.19 ± 0.08 | 0.09 ± 0.04 | 0.12 ± 0.05 | 48.5 ± 160.5 |
0.5 m | 18.1 ± 8.3 | 10.8 ± 2.9 | 7.2 ± 1.2 | 57.9 ± 52.7 | 326.8 ± 87.1 | 0.18 ± 0.08 | 0.09 ± 0.04 | 0.12 ± 0.05 | 41.4 ± 143.2 | ||
1.0 m | 14.9 ± 7.4 | 11.5 ± 2.1 | 7.6 ± 0.9 | 82.7 ± 77.9 | 298.9 ± 64.7 | 0.15 ± 0.06 | 0.07 ± 0.03 | 0.10 ± 0.04 | 124.4 ± 309.4 | ||
1.5 m | 10.6 ± 2.1 | 11.6 ± 1.5 | 7.2 ± 0.6 | 90.1 ± 96.9 | 283.7 ± 65.2 | 0.12 ± 0.04 | 0.05 ± 0.02 | 0.08 ± 0.02 | 308.2 ± 467.2 | ||
Middle | Surface | 19.4 ± 8.7 | 10.9 ± 2.2 | 7.7 ± 0.9 | 61.3 ± 57.2 | 302.6 ± 53.8 | 0.18 ± 0.08 | 0.09 ± 0.04 | 0.12 ± 0.05 | 46.1 ± 162.1 | |
0.5 m | 18.2 ± 8.2 | 10.7 ± 2.7 | 7.5 ± 1.1 | 59.4 ± 45.0 | 318.0 ± 66.9 | 0.18 ± 0.08 | 0.09 ± 0.04 | 0.12 ± 0.05 | 52.2 ± 192.2 | ||
1.0 m | 15.1 ± 7.4 | 12.0 ± 2.1 | 8.0 ± 1.1 | 89.2 ± 86.1 | 293.8 ± 67.0 | 0.15 ± 0.06 | 0.07 ± 0.03 | 0.10 ± 0.04 | 85.4 ± 261.1 | ||
1.5 m | 10.3 ± 2.1 | 11.9 ± 1.2 | 7.5 ± 0.5 | 118.0 ± 128.3 | 318.0 ± 21.2 | 0.11 ± 0.04 | 0.05 ± 0.02 | 0.07 ± 0.02 | 209.4 ± 368.7 | ||
VA21 | Entrance | Surface | 21.8 ± 9.2 | 10.9 ± 3.1 | 7.9 ± 1.3 | 15.0 ± 10.9 | 248.5 ± 57.8 | 0.14 ± 0.03 | 0.07 ± 0.01 | 0.09 ± 0.02 | 62.7 ± 186.1 |
0.5 m | 19.7 ± 8.2 | 10.1 ± 2.8 | 7.4 ± 1.2 | 17.1 ± 13.8 | 271.0 ± 60.0 | 0.14 ± 0.03 | 0.06 ± 0.01 | 0.09 ± 0.02 | 28.5 ± 47.9 | ||
1.0 m | 16.9 ± 8.9 | 8.5 ± 3.3 | 6.9 ± 1.2 | 20.1 ± 13.8 | 240.8 ± 83.4 | 0.13 ± 0.03 | 0.06 ± 0.01 | 0.08 ± 0.02 | 113.5 ± 244.5 | ||
Middle | Surface | 21.5 ± 9.0 | 10.7 ± 2.8 | 8.1 ± 1.3 | 15.3 ± 8.9 | 191.1 ± 94.6 | 0.14 ± 0.03 | 0.07 ± 0.01 | 0.09 ± 0.02 | 57.0 ± 189.0 | |
0.5 m | 19.3 ± 8.3 | 10.4 ± 2.7 | 7.8 ± 1.2 | 17.5 ± 13.3 | 214.4 ± 81.3 | 0.14 ± 0.02 | 0.06 ± 0.01 | 0.09 ± 0.02 | 28.6 ± 47.1 | ||
1.0 m | 17.2 ± 9.0 | 9.3 ± 3.2 | 7.4 ± 1.2 | 17.5 ± 12.3 | 238.1 ± 77.5 | 0.13 ± 0.03 | 0.06 ± 0.01 | 0.08 ± 0.02 | 34.4 ± 64.0 | ||
MD11 | Entrance | Surface | 23.6 ± 4.0 | 14.2 ± 3.9 | 8.6 ± 1.0 | 16.2 ± 14.3 | 408.6 ± 184.7 | 0.17 ± 0.02 | 0.07 ± 0.01 | 0.11 ± 0.01 | 88.5 ± 63.5 |
0.5 m | 21.0 ± 5.2 | 13.0 ± 2.3 | 8.3 ± 0.8 | 14.5 ± 9.5 | 415.1 ± 184.8 | 0.16 ± 0.02 | 0.07 ± 0.01 | 0.10 ± 0.01 | 115.9 ± 123.4 | ||
1.0 m | 16.5 ± 7.1 | 10.9 ± 2.6 | 7.8 ± 0.6 | 14.9 ± 10.1 | 465.3 ± 176.6 | 0.15 ± 0.02 | 0.07 ± 0.01 | 0.10 ± 0.01 | 107.1 ± 113.7 | ||
Middle | Surface | 23.3 ± 4.0 | 14.7 ± 4.6 | 8.7 ± 1.0 | 20.3 ± 20.6 | 379.3 ± 190.8 | 0.17 ± 0.02 | 0.08 ± 0.01 | 0.11 ± 0.01 | 65.5 ± 75.6 | |
0.5 m | 21.6 ± 3.2 | 12.7 ± 2.7 | 8.4 ± 0.9 | 15.8 ± 12.9 | 388.3 ± 186.6 | 0.16 ± 0.02 | 0.07 ± 0.01 | 0.11 ± 0.01 | 77.4 ± 51.9 | ||
1.0 m | 17.4 ± 6.6 | 11.2 ± 2.9 | 8.0 ± 0.7 | 15.3 ± 10.8 | 442.6 ± 181.3 | 0.15 ± 0.02 | 0.07 ± 0.01 | 0.10 ± 0.01 | 73.2 ± 50.1 | ||
MD21 | Entrance | Surface | 16.9 ± 10.1 | 8.7 ± 6.8 | 8.0 ± 1.3 | 25.4 ± 17.9 | 275.8 ± 77.4 | 0.29 ± 0.06 | 0.14 ± 0.03 | 0.19 ± 0.04 | 141.1 ± 360.1 |
0.5 m | 17.2 ± 9.5 | 13.8 ± 4.9 | 7.9 ± 1.2 | 30.5 ± 36.0 | 280.1 ± 77.1 | 0.28 ± 0.06 | 0.14 ± 0.03 | 0.18 ± 0.04 | 42.2 ± 65.5 | ||
1.0 m | 18.5 ± 8.8 | 12.5 ± 3.9 | 8.0 ± 1.1 | 31.7 ± 33.5 | 295.3 ± 85.9 | 0.29 ± 0.05 | 0.14 ± 0.03 | 0.19 ± 0.03 | 35.1 ± 65.4 | ||
Middle | Surface | 16.9 ± 9.8 | 12.6 ± 6.6 | 8.3 ± 1.3 | 29.8 ± 31.7 | 293.9 ± 79.2 | 0.28 ± 0.05 | 0.14 ± 0.03 | 0.18 ± 0.03 | 14.5 ± 11.4 | |
0.5 m | 16.9 ± 9.1 | 14.1 ± 4.6 | 8.3 ± 1.3 | 32.2 ± 30.6 | 289.1 ± 78.8 | 0.27 ± 0.06 | 0.13 ± 0.03 | 0.18 ± 0.04 | 21.6 ± 27.1 | ||
1.0 m | 17.4 ± 8.1 | 12.8 ± 3.6 | 8.3 ± 1.2 | 33.1 ± 34.4 | 293.4 ± 77.7 | 0.27 ± 0.05 | 0.13 ± 0.03 | 0.18 ± 0.03 | 24.0 ± 37.9 |
3.2. Water Quality Differences
Water Quality Parameters | Reservoirs | Surface | 0.5 m below | 1.0 m below | 1.5 m below |
---|---|---|---|---|---|
T | VA12 | 61% | 74% | 64% | 67% |
VA21 | 60% | 53% | 30% | – | |
MD11 | 79% | 79% | 77% | – | |
MD21 | 92% | 65% | 81% | 64% | |
DO | VA12 | 57% | 79% | 82% | 67% |
VA21 | 30% | 37% | 80% | – | |
MD11 | 57% | 79% | 62% | – | |
MD21 | 58% | 82% | 50% | 36% | |
pH | VA12 | 78% | 89% | 82% | 100% |
VA21 | 75% | 63% | 90% | – | |
MD11 | 93% | 93% | 85% | – | |
MD21 | 75% | 88% | 100% | 100% | |
Chla | VA12 | 48% | 58% | 82% | 67% |
VA21 | 50% | 37% | 40% | – | |
MD11 | 50% | 57% | 62% | – | |
MD21 | 58% | 53% | 44% | 36% | |
ORP | VA12 | 57% | 84% | 82% | 100% |
VA21 | 50% | 53% | 60% | – | |
MD11 | 79% | 93% | 92% | – | |
MD21 | 100% | 71% | 75% | 73% | |
EC | VA12 | 57% | 58% | 36% | 67% |
VA21 | 20% | 42% | 60% | – | |
MD11 | 50% | 57% | 62% | – | |
MD21 | 67% | 53% | 56% | 55% | |
Salinity | VA12 | 13% | 11% | 18% | 0% |
VA21 | 10% | 11% | 20% | – | |
MD11 | 29% | 29% | 15% | – | |
MD21 | 0% | 12% | 0% | 18% | |
TDS | VA12 | 52% | 47% | 18% | 33% |
VA21 | 20% | 26% | 60% | – | |
MD11 | 43% | 57% | 46% | – | |
MD21 | 50% | 47% | 44% | 64% | |
TUR | VA12 | 26% | 58% | 45% | 33% |
VA21 | 30% | 42% | 40% | – | |
MD11 | 14% | 43% | 46% | – | |
MD21 | 58% | 65% | 56% | 64% |
3.3. Seasonal Impact on Water Quality Differences
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Valdez-Aguilar, L.A.; Grieve, C.M.; Poss, J.; Mellano, M.A. Hypersensitivity of ranunculus asiaticus to salinity and alkaline pH in irrigation water in sand cultures. HortScience 2009, 44, 138–144. [Google Scholar]
- Bauder, T.A.; Waskom, R.M.; Sutherland, P.L; Davis, J.G. Irrigation Water Quality Criteria; Colorado State University Extension: Fort Collins, CO, USA, 2011. [Google Scholar]
- Argo, W.R.; Fisher, P.R. Understanding pH Management for Container-grown Crops; Meister Publishing: Willoughby, OH, USA, 2002. [Google Scholar]
- Yang, X.; Gallegly, M.E.; Hong, C. A high-temperature tolerant species in clade 9 of the genus phytophthora: P. hydrogena sp. Nov. Mycologia 2014, 106, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Hong, C. Phytophthora virginiana sp. Nov., a high-temperature tolerant species from irrigation water in virginia. Mycotaxon 2014, 126, 167–176. [Google Scholar] [CrossRef]
- Hong, C.; Gallegly, M.E.; Richardson, P.A.; Kong, P.; Moorman, G.W. Phytophthora irrigata, a new species isolated from irrigation reservoirs and rivers in eastern united states of america. FEMS Microbiol. Lett. 2008, 285, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Gallegly, M.E.; Richardson, P.A.; Kong, P.; Moorman, G.W.; Lea-Cox, J.D.; Ross, D.S. Phytophthora hydropathica, a new pathogen identified from irrigation water, rhododendron catawbiense and kalmia latifolia. Plant Pathol. 2010, 59, 913–921. [Google Scholar] [CrossRef]
- Hong, C.; Richardson, P.A.; Hao, W.; Ghimire, S.R.; Kong, P.; Moorman, G.W.; Lea-Cox, J.D.; Ross, D.S. Phytophthora aquimorbida sp. Nov. and phytophthora taxon “aquatilis” recovered from irrigation reservoirs and a stream in virginia, USA. Mycologia 2012, 104, 1097–1108. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Gallegly, M.E.; Richardson, P.A.; Kong, P. Phytophthora pini leonian resurrected to distinct species status. Mycologia 2011, 103, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Moorman, G.W.; Lea-Cox, J.D.; Ross, D.S.; Richardson, P.A.; Hong, C. Zoosporic tolerance to pH stress and its implications for phytophthora species in aquatic ecosystems. Appl. Environ. Microb. 2009, 75, 4307–4314. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Hong, C. Oxygen stress reduces zoospore survival of phytophthora species in a simulated aquatic system. BMC Microbiol. 2014, 14. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Lea-Cox, J.D.; Hong, C.X. Effect of electrical conductivity on survival of phytophthora alni, P. kernoviae and P. ramorum in a simulated aquatic environment. Plant Pathol. 2012, 61, 1179–1186. [Google Scholar] [CrossRef]
- Suslow, T.V. Using Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation; University of California: Davis, CA, USA, 2004. [Google Scholar]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti river (India)—A case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Malik, A.; Sinha, S. Water quality assessment and apportionment of pollution sources of Romti river (Rndia) using multivariate statistical techniques—R case study. Anal. Chim. Acta 2005, 538, 355–374. [Google Scholar] [CrossRef]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris river basin, Turkey. Catena 2012, 92, 11–21. [Google Scholar] [CrossRef]
- Bennett, H.H.; Mullen, M.W.; Stewart, P.M.; Sawyer, J.A.; Webber, E.C. Development of an invertebrate community index for an Alabama coastal plain watershed1. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 43–51. [Google Scholar] [CrossRef]
- Sridhar, V.; Sansone, A.L.; LaMarche, J.; Dubin, T.; Lettenmaier, D.P. Prediction of stream temperature in forested watersheds. JAWRA J. Am. Water Resour. Assoc. 2004, 40, 197–213. [Google Scholar] [CrossRef]
- Alkarkhi, A.F.; Ahmad, A.; Ismail, N.; Mat Easa, A.; Omar, K. Assessment of surface water through multivariate analysis. J. Sustain. dev. 2009, 1. [Google Scholar] [CrossRef]
- Poudel, D.D.; Lee, T.; Srinivasan, R.; Abbaspour, K.; Jeong, C.Y. Assessment of seasonal and spatial variation of surface water quality, identification of factors associated with water quality variability, and the modeling of critical nonpoint source pollution areas in an agricultural watershed. J. Soil Water Conserv. 2013, 68, 155–171. [Google Scholar] [CrossRef]
- Hong, C.; Lea-Cox, J.; Ross, D.; Moorman, G.; Richardson, P.; Ghimire, S.; Kong, P. Containment basin water quality fluctuation and implications for crop health management. Irrigation Sci. 2009, 27, 485–496. [Google Scholar] [CrossRef]
- Zhang, H.; Richardson, P.A.; Belayneh, B.E.; Ristvey, A.; Lea-Cox, J.D.; Copes, W.E.; Moorman, G.W.; Hong, C. Recycling irrigation reservoir stratification and implications for crop health and production. J. Am. Water Resour. Assoc. 2015. Submitted. [Google Scholar]
- Hong, C.; Moorman, G.W. Plant pathogens in irrigation water: Challenges and opportunities. Crit. Rev. Plant Sci. 2005, 24, 189–208. [Google Scholar] [CrossRef]
- Buisman, C.J. Root Rots Caused by Phycomycetes. Ph.D. Thesis, Rijksuniversiteit te Utrecht, Utrecht, The Netherlands, April 1927. [Google Scholar]
- Wolfe, N.L.; Zepp, R.G.; Doster, J.C.; Hollis, R.C. Captan hydrolysis. J. Agric. Food Chem. 1976, 24, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Yeager, T.H.; Bilderback, T.; Fare, D.; Gilliam, C.; Lea-Cox, J.D.; Niemiera, A.; Ruter, J.; Tilt, K.; Warren, S.; Whitwell, T. Best Management Practices Guide: Guide for Producing Nursery Crops, 3rd ed.; Southern Nursery Association: Atlanta, GA, USA, 2013. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Richardson, P.A.; Belayneh, B.E.; Ristvey, A.; Lea-Cox, J.; Copes, W.E.; Moorman, G.W.; Hong, C. Comparative Analysis of Water Quality between the Runoff Entrance and Middle of Recycling Irrigation Reservoirs. Water 2015, 7, 3861-3877. https://doi.org/10.3390/w7073861
Zhang H, Richardson PA, Belayneh BE, Ristvey A, Lea-Cox J, Copes WE, Moorman GW, Hong C. Comparative Analysis of Water Quality between the Runoff Entrance and Middle of Recycling Irrigation Reservoirs. Water. 2015; 7(7):3861-3877. https://doi.org/10.3390/w7073861
Chicago/Turabian StyleZhang, Haibo, Patricia A. Richardson, Bruk E. Belayneh, Andrew Ristvey, John Lea-Cox, Warren E. Copes, Gary W. Moorman, and Chuanxue Hong. 2015. "Comparative Analysis of Water Quality between the Runoff Entrance and Middle of Recycling Irrigation Reservoirs" Water 7, no. 7: 3861-3877. https://doi.org/10.3390/w7073861
APA StyleZhang, H., Richardson, P. A., Belayneh, B. E., Ristvey, A., Lea-Cox, J., Copes, W. E., Moorman, G. W., & Hong, C. (2015). Comparative Analysis of Water Quality between the Runoff Entrance and Middle of Recycling Irrigation Reservoirs. Water, 7(7), 3861-3877. https://doi.org/10.3390/w7073861