Simulating Volumetric Pricing for Irrigation Water Operational Cost Recovery under Complete and Perfect Information
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. The Economic Territorial Model
Model Calibration: Risk Aversion and Positive Mathematical Programming
2.3. Operational Cost for Water Distribution
Output | HP pipelines | LP pipelines | GR channels |
---|---|---|---|
Irrigated land | 0.798 | 0.824 | 0.897 |
Water/hectare | 0.378 | –0.084 ** | 0.498 |
2.4. Simulation of Hypothetical Payment Scheme under Complete and Perfect Information
2.4.1. Baseline Scenario
Crop | HPa | HPb | LP | GR |
---|---|---|---|---|
Melons | 72 | 58 | 42 | 26 |
Ryegrass | ||||
Clementine | 73 | |||
Orange | ||||
Carrot | 103 | 83 | 60 | 37 |
Strawberry | ||||
Lettuce | ||||
Pepper | ||||
Potato | ||||
Artichoke | ||||
Tomato | 134 | 110 | 78 | 48 |
Maize | 165 | 133 | 96 | 59 |
Sorghum | ||||
Alfalfa | 141 | |||
Rice | 248 | 200 | 144 | 88 |
2.4.2. Simulated Scenario
3. Results and Discussion
3.1. Results
‘000 EUR | Baseline | Simulated | Absolute variation | Percentage variation |
---|---|---|---|---|
Water Distribution Cost | 3,524 | 3,199 | –325 | –9.2 |
Pricing Coverage | 2,144 (61%) | 3,199 (100%) | 1,055 | 49.2 |
Rest-of-society coverage | 1,380 | 0 | –1,380 | –100.0 |
Farmers’ Net Margin | 77,488 | 76,097 | –1,390 | –1.8 |
Total social gain | –10 |
3.2. Impact among Districts and Farm Types
Resource | Baseline | Simulated | Absolute variation | Percentage variation |
---|---|---|---|---|
Total Water (‘000 m3) | 122,145 | 117,252 | −4,893 | −4 |
CBO-WUA water | 115,156 | 110,497 | −4,659 | −4 |
Groundwater | 6,989 | 6,756 | −233 | −3 |
Total Labour (hours) | 5,223 | 5,148 | −75 | −1 |
Farm Labour | 4,315 | 4,276 | −39 | −1 |
External Labour | 908 | 872 | −36 | −4 |
Water Price (€/ha) | Baseline | Simulated | Percentage variation | Elasticity |
---|---|---|---|---|
High Pressure a | 127 | 192 | 51.0 | −0.189 |
High Pressure b | 100 | 192 | 92.5 | −0.087 |
Low Pressure | 77 | 197 | 155.0 | −0.026 |
Gravity | 78 | 18 | −77.0 | −0.001 |
Total | 104 | 166 | 59.9 | −0.112 |
Water Price (€/m3) | ||||
High Pressure a | 0.0359 | 0.0512 | 42.8 | −0.103 |
High Pressure b | 0.0197 | 0.0367 | 86.1 | −0.056 |
Low Pressure | 0.0144 | 0.0390 | 170.9 | −0.056 |
Gravity | 0.0062 | 0.0014 | −77.0 | −0.001 |
Total | 0.0186 | 0.0289 | 55.5 | −0.073 |
Farm type | Baseline | Simulated (%∆) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WUA facilities | HPa | HPb | LP | GR | Off-WUA | TOTAL | HPa | HPb | LP | GR | Off-WUA | TOTAL |
Rice | - | 1.0 | 1.3 | 4.2 | - | 3.6 | - | −21.2 | −33.7 | 6.7 | - | 4.5 |
Citrus | - | 5.1 | - | - | - | 5.1 | - | -2.5 | - | - | - | −2.5 |
Cattle A | 5.8 | - | - | - | - | 5.8 | −1.9 | - | - | - | - | −1.9 |
Cattle B | 4.2 | - | - | - | - | 4.2 | −2.9 | - | - | - | - | −2.9 |
Greenhouse | 0.7 | 2.1 | 3.4 | 3.7 | - | 1.2 | −7.3 | −3.3 | −5.7 | 3.8 | - | −4.7 |
Vegetables- Cereals | 2.5 | 2.2 | 2.3 | 2.2 | - | 2.3 | −2.7 | −3.3 | −16.6 | 6.4 | - | −6.8 |
Cereals- Forages | - | 2.5 | 2.6 | - | - | 2.6 | - | −2.2 | −6.7 | - | - | −2.6 |
Tree and arable crops | - | - | 0.8 | 2.8 | - | 1.1 | - | - | −5.5 | 4.4 | - | −1.6 |
Sheep A | - | 1.1 | 1.7 | 2.1 | - | 1.3 | - | −3.8 | −6.5 | 1.8 | - | −3.2 |
Off-WUA | ||||||||||||
Vegetables-Fruit | - | - | - | - | 2.1 | 2.1 | - | - | - | - | 0.0 | 0.0 |
Cereals-Forages | - | - | - | - | 4.3 | 4.3 | - | - | - | - | 0.0 | 0.0 |
Sheep B | - | - | - | - | −0.2 | −0.2 | - | - | - | - | 0.0 | 0.0 |
Sheep C | - | - | - | - | 0.4 | 0.4 | - | - | - | - | 0.0 | 0.0 |
Total | 4.8 | 2.4 | 2.1 | 3.7 | 1.1 | 3.0 | −2.2 | −3.0 | −14.7 | 6.3 | 0.0 | −2.6 |
Farm type | Baseline (€/h) | Simulated (% ∆) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WUA facilities | HPa | HPb | LP | GR | Off-WUA | TOTAL | HPa | HPb | LP | GR | Off-WUA | TOTAL | |
Rice | - | −10.4 | −2.3 | 40.8 | - | 31.8 | - | −42.2 | −395.8 | 10.5 | - | 9.0 | |
Citrus | - | 21.2 | - | - | - | 21.2 | - | −2.7 | - | - | - | −2.7 | |
Cattle A | 16.1 | - | - | - | - | 16.1 | −1.5 | - | - | - | - | −1.5 | |
Cattle B | 12.8 | - | - | - | - | 12.8 | −2.1 | - | - | - | - | −2.1 | |
Greenhouse | 3.4 | 7.8 | 11.5 | 12.3 | - | 5.1 | −8.2 | −2.2 | −4.8 | 3.3 | - | −4.8 | |
Vegetables-Cereals | 8.8 | 8.1 | 8.2 | 8.1 | - | 8.2 | −1.7 | −2.4 | −12.3 | 4.4 | - | −4.9 | |
Cereals-Forages | - | 18.4 | 18.9 | - | - | 18.5 | - | −3.5 | −10.9 | - | - | −4.2 | |
Tree and arable crops | - | - | 5.1 | 9.0 | - | 5.7 | - | - | −2.2 | 2.5 | - | −0.9 | |
Sheep A | - | 4.6 | 6.6 | 7.7 | - | 5.2 | - | −3.0 | −5.5 | 1.6 | - | −2.6 | |
Off-WUA | |||||||||||||
Vegetables- Fruit | - | - | - | - | 7.7 | 7.7 | - | - | - | - | 0.0 | 0.0 | |
Cereals-Forages | - | - | - | - | 15.7 | 15.7 | - | - | - | - | 0.0 | 0.0 | |
Sheep B | - | - | - | - | 1.3 | 1.3 | - | - | - | - | 0.0 | 0.0 | |
Sheep C | - | - | - | - | 4.2 | 4.2 | - | - | - | - | 0.0 | 0.0 | |
Total | 14.1 | 9.2 | 7.7 | 17.4 | 5.1 | 10.6 | −1.5 | −3.0 | −11.5 | 8.0 | 0.0 | −2.0 |
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- European Parliament and the Council of EU. OJEC L 327: Directive 2000/60/EC Establishing a Framework for Community Action in the Field of Water Policy. European Parliament and the Council of EU: Aberdeen, UK, 2000. [Google Scholar]
- European Union of National Association of Water Suppliers and Waste Water Services. Water Framework Directive—Determination of Cost Recovery; European Federation of National Associations of Water Services: Brussels, Belgium, 2004. [Google Scholar]
- WATECO Group. Economics and the Environment—The Implementation Challenge of the Water Framework Directive. In CIS Guidance Document 01 Common Implementation Strategy for the Water Framework Directive (2000/60/EC); European Communities: Luxemburg, 2003; ISBN: 92-894-4144-5. [Google Scholar]
- Berbel, J.; Azahara Mesa-Jurado, M.; Pistón, J.M. Value of irrigation water in Guadalquivir basin (Spain) by residual value method. Water Resour. Manag. 2011, 25, 1565–1579. [Google Scholar] [CrossRef]
- Venot, J.P.; Molle, F. Groundwater depletion in the Jordan highlands: Can pricing policies regulate irrigation water use? Water Resour. Manag. 2008, 22, 1925–1941. [Google Scholar]
- Dono, G.; Giraldo, L.; Severini, S. Pricing Irrigation Water under alternative charging methods: Possible shortcomings of a volumetric approach. Agric. Water Manag. 2010, 97, 1795–1805. [Google Scholar] [CrossRef]
- Dono, G.; Giraldo, L. Un’analisi dei costi per la distribuzione dell’acqua in agricoltura. Riv. Econ. Agrar. 2009, 3–4, 339–357. [Google Scholar]
- Azevedo, L.G.T.; Baltar, A.M. Water pricing reforms: Issues and challenges of implementation. Water Resour. Dev. 2005, 11, 19–29. [Google Scholar] [CrossRef]
- Tsur, Y. Water regulation via pricing: The role of implementation costs and asymmetric information. In The Political Economy of Water Pricing Reforms; Dinar, A., Ed.; World Bank Publications: Washington, DC, USA, 2000. [Google Scholar]
- National Institute of Agricultural Economics (INEA), Rome, Italy. Unpublished work. 2014; Unpublished work.
- Van Ittersum, M.K.; Ewert, F.; Heckelei, T.; Wery, J.; Olsson, J.A.; Andersen, E.; Bezlepkina, I.; Brouwer, F.M.; Donatelli, M.; Flichman, G.; et al. Integrated assessment of agricultural systems—A component-based framework for the European Union (SEAMLESS). Agric. Syst. 2008, 96, 1–3. [Google Scholar] [CrossRef]
- Finger, J.M.; Kreinin, M.E. A measure of export similarity and its possible uses. Econ. J. 1979, 89, 905–912. [Google Scholar] [CrossRef]
- Louhichi, K.; Kanellopoulos, A.; Janssen, S.; Flichman, G.; Blanco, M.; Hengsdijk, H.; Heckelei, T.; Berentsen, P.; Lansink, A.O.; Ittersum, M.V. FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies. Agric. Syst. 2010, 103, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Arfini, F.; Paris, Q. A positive mathematical programming model for regional analysis of agricultural policies. In The Regional Dimension in Agricultural Economics and Policies, Proceedings of the 40th EAAE Seminar, Ancona, Italy, 26–28 June 1995; pp. 17–35.
- Howitt, R.E. Positive mathematical programming. Am. J. Agric. Econ. 1995, 77, 329–342. [Google Scholar] [CrossRef]
- Paris, Q.; Howitt, R. An analysis of ill-posed production problems using maximum entropy. Am. J. Agric. Econ. 1998, 85, 254–265. [Google Scholar]
- Heckelei, T.; Wolff, H. Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy. Eur. Rev. Agric. Econ. 2003, 30, 27–50. [Google Scholar] [CrossRef]
- Judez, L.; Chaya, C.; Martinez, S.; Gonzalez, A.A. Effects of the measures envisaged in “Agenda 2000” on arable crop producers and beef and veal producers: An application of positive Mathematical Programming to representative farms of a Spanish region. Agric. Syst. 2001, 67, 121–138. [Google Scholar] [CrossRef]
- Röhm, O.; Dabbert, S. Integrating agri-environmental programs into regional production models: An extension of positive mathematical programming. Am. J. Agric. Econ. 2003, 85, 254–265. [Google Scholar] [CrossRef]
- Calatrava, J.; Garrido, A. Modelling water markets under uncertain water supply. Eur. Rev. Agric. Econ. 2005, 32, 119–142. [Google Scholar] [CrossRef]
- Buysse, J.; Fernagut, B.; Harmignie, O.; de-Frahan, B.H.; Lauwers, L.; Polome, P.; van-Huylenbroeck, G.; van-Meensel, J. Farm-based modelling of the EU sugar reform impact on Belgian sugar beet suppliers. Eur. Rev. Agric. Econ. 2007, 34, 21–52. [Google Scholar] [CrossRef]
- Henry de Frahan, B.; Buysse, J.; Polomé, P.; Fernagut, B.; Harmignie, O.; Lauwers, L.; van Huylenbroeck, G.; van Meensel, J. Positive mathematical programming for agricultural and environmental policy analysis: Review and practice. In Handbook of Operations Research in Natural Resources; Weintraub, A., Bjorndal, T., Epstein, R., Romero, C., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2007; pp. 129–157. [Google Scholar]
- Iglesias, E.; Blanco, M. New directions in water resources management: The role of water pricing policies. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Cortignani, R.; Severini, S. Modeling farm-level adoption of deficit irrigation using Positive Mathematical Programming. Agric. Water Manag. 2009, 96, 1785–1791. [Google Scholar] [CrossRef]
- Cortignani, R.; Severini, S. A constrained optimization model based on generalized maximum entropy to assess the impact of reforming agricultural policy on the sustainability of irrigated areas. Agric. Econ. 2012, 43, 621–633. [Google Scholar] [CrossRef]
- Arfini, F.; Donati, M. Organic production and the capacity to respond to market signals and policies: An empirical analysis of a sample of FADN farms. Agroecol. Sustain. Food Syst. 2013, 37, 149–171. [Google Scholar]
- Heckelei, T.; Britz, W.; Zhang, Y. Positive mathematical programming approaches—Recent developments in literature and applied modelling. Bio Based Appl. Econ. 2012, 1, 109–124. [Google Scholar]
- Christensen, L.; Jorgensen, D.; Lau, L. Transcendental logarithmic production frontiers. Rev. Econ. Stat. 1973, 55, 28–45. [Google Scholar] [CrossRef]
- Dono, G.; Giraldo, L.; Severini, S. The cost of irrigation water delivery: An attempt to reconcile the concepts of cost and efficiency. Water Resour. Manag. 2012, 26, 1865–1877. [Google Scholar] [CrossRef]
- Zellner, A. An efficient method of estimating seemingly unrelated regressions and tests for aggregation bias. J. Am. Stat. Assoc. 1962, 57, 348–368. [Google Scholar] [CrossRef]
- Weninger, Q. Estimating multiproduct costs when some outputs are not produced. Empir. Econ. 2003, 28, 753–765. [Google Scholar] [CrossRef]
- Battese, G.E. A note on the estimation of Cobb-Douglas production functions when some explanatory variables have zero values. J. Agric.Econ. 2008, 48, 250–252. [Google Scholar] [CrossRef]
- Barabaschi, N. Analisi delle strutture di costo dell’industria idrica italiana: Le economie di scala, di densità e di scopo. Quaderni di Ricerca REF. 2007, 43. Available online: http://www.ref-e.com/downloads/abstract_q43ref.pdf (accessed on 04 April 2014).
- Regional Law of Regione Sardegna of 23 May 2008, n. 6, Art.44. Available online: https://www.regione.sardegna.it/j/v/80?s=85010&v=2&c=4426&t=1 (accessed on 30 January 2014).
- Fudenberg, D.; Tirole, J. Game Theory; MIT Press: Cambridge, MA, USA, 1993; Chapter 6, Section 1. [Google Scholar]
- Thomas, L.C. Games, Theory and Applications; Dover Publications: New York, NY, USA, 2003; p. 19. [Google Scholar]
- Woolridge, J.R.; Gray, G. Applied Principles of Finance; Kendall Hunt Publishing Company: Dubuque, IA, USA, 2006. [Google Scholar]
- Tsur, Y.; Roe, T.; Doukkali, R.; Dinar, A. Pricing Irrigation Water: Principles and Cases from Developing Countries; Resources for the Future: Washington, DC, USA, 2004. [Google Scholar]
- Alarcón, J.; Mesa-Jurado, M.A.; Berbel, J. Devising irrigation water tariffs with overconsumption penalties. Span. J. Agric. Res. 2011, 9, 971–980. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Giraldo, L.; Cortignani, R.; Dono, G. Simulating Volumetric Pricing for Irrigation Water Operational Cost Recovery under Complete and Perfect Information. Water 2014, 6, 1204-1220. https://doi.org/10.3390/w6051204
Giraldo L, Cortignani R, Dono G. Simulating Volumetric Pricing for Irrigation Water Operational Cost Recovery under Complete and Perfect Information. Water. 2014; 6(5):1204-1220. https://doi.org/10.3390/w6051204
Chicago/Turabian StyleGiraldo, Luca, Raffaele Cortignani, and Gabriele Dono. 2014. "Simulating Volumetric Pricing for Irrigation Water Operational Cost Recovery under Complete and Perfect Information" Water 6, no. 5: 1204-1220. https://doi.org/10.3390/w6051204
APA StyleGiraldo, L., Cortignani, R., & Dono, G. (2014). Simulating Volumetric Pricing for Irrigation Water Operational Cost Recovery under Complete and Perfect Information. Water, 6(5), 1204-1220. https://doi.org/10.3390/w6051204