1. Introduction
Arctic Canada, as well as numerous other polar regions, continues to undergo rapid change resulting from increased resource extraction, increased development and changing climate which has accelerated the melting of permafrost and polar ice. One particular concern of this is that the population growth in Arctic communities may outpace the development of the municipal infrastructure required to ensure effective treatment of municipal wastewaters and protection of local source waters. Within the Canadian Arctic many communities have for a long time relied solely on waste stabilization ponds or facultative lakes as the main process for the treatment of wastewaters. Waste stabilization ponds have been applied in the Canadian Arctic for decades [
1]. The original intent of many Arctic systems was focused on waste disposal as a management technique, rather than wastewater treatment [
2]. The focus on waste disposal has also been common in many other Polar Regions, as described by Gunnarsdottir
et al. and Ritter [
3,
4]. The use of ponds and facultative lakes arose primarily in response to the remote nature of these communities, harsh climates, small population sizes and the logistical and technical barriers that hinder the application of mechanical treatment systems more typical of developed regions in southern Canada. In contrast to ponds/lakes, tundra wetlands have been generally viewed as providing little to no treatment benefit, leading to concerns that the release of untreated or partially-treated wastewaters into a natural environment may pose a human health risk [
5]. Wetlands located downstream of the waste stabilization ponds have, in many cases, developed in response to the release of nutrients and organic matter exiting the ponds, which has in turn provided the conditions conducive to the growth and establishment of natural vegetation [
2,
5]. Hence, many tundra wetlands did not arise because of any intentional design on the part of waste managers and thus cannot be considered akin to engineered (e.g., constructed) wetlands in terms of design features.
The remote setting of the Arctic communities often presents significant logistical challenges to investigating and monitoring the performance of tundra wetlands and because of this, relatively little scientific documentation exists that assesses the efficacy of these natural areas to treat domestic wastewaters. Likewise the data regarding the performance of individual waste stabilization ponds and facultative lakes has also been generally sparse or non-existent [
6,
7,
8,
9], although there is a recent trend of increasing surveillance because of the Canadian Council for the Ministers of the Environment’s new national standards. Tundra wetlands located downstream of waste stabilization ponds or those connected with facultative lakes have always been considered as part of the receiving environment and not part of the treatment process. The exploratory research by Yates
et al. [
10,
11] has demonstrated that although tundra wetlands are not formally recognized as part of the treatment process they do in fact provide a significant additional treatment benefit [
10,
11]. Yates and colleagues assessed the wastewater treatment potential of several tundra wetlands located downstream of primary treatment facilities over an entire ice-free period [
10,
11]. Apart from these investigations there are relatively few studies that have matched the scope of this tundra specific work. Most of the previously collected information related to the predictive aspects of wetland size and anticipated cold climate treatment performance is found in the unpublished sources literature. However, most of the unpublished sources literature provides little guidance regarding treatment process reaction rates, management strategies or predictive tools for assessing the capacity of existing tundra wetlands to meet the needs of expanding populations [
5].
It should be understood that tundra wetlands used for the treatment of municipal wastewaters are fundamentally different from engineered (constructed) wetlands that are used for the same purposes. The use of constructed wetlands in tropical and temperate regions is gaining recognition as a viable, low cost passive treatment system [
12,
13,
14,
15,
16,
17]. Constructed wetlands, as their name implies, refers to wetlands that are man-made and designed to specific dimensions, porosity, flow paths, hydraulic retention times, and related design features for the intended purpose of achieving predetermined levels of treatment [
12,
13,
18]. The science regarding treatment processes, reaction rate constants, soil porosity, hydraulics, design options and management practices has been thoroughly investigated in the last two decades and is well documented [
19,
20,
21,
22,
23,
24,
25,
26].
In contrast, tundra wetlands are significantly different in several aspects. First, tundra wetlands have developed through natural processes and have not been specifically designed to meet a desired performance characteristic. Each tundra wetland is unique and very little is known about site specific hydrology, porosity, soil types and depth, flow paths and other key parameters influencing wastewater treatment. For example, vegetative boundaries are relatively easy to identify, however it is difficult to know the subsurface flow paths that the wastewater travels and how these may change seasonally or annually and thus it is difficult to determine what portions of the wetland are actually involved in the treatment process. Likewise, soil types and depths are not homogeneous and unlike constructed wetlands it is difficult to gather information on many of the physical parameters required to make predictions regarding treatment performance. Lastly, the scientific understanding of treatment processes has largely been generated from constructed wetlands operated in tropical or temperate regions, unlike in the harsh northern environmental conditions where tundra wetlands freeze solid for a significant portion of the year.
Climate change presents public health risk uncertainties and thus the management of wastewater in remote communities requires rational predictive models of performance comparable to southern counterparts particularly as populations continue to increase in many Arctic communities in Canada and worldwide. In this paper, we outline sizing, define reaction rate constants, and demonstrate a predictive model (SubWet 2.0) that can be used by stakeholders for the operation of tundra wetlands for the treatment of municipal wastewaters. SubWet 2.0 is applied to two existing Canadian Arctic tundra wetlands, Paulatuk, Northwest Territories and Chesterfield Inlet, Nunavut based on data collected from Yates
et al. [
10] and Yates
et al. [
11]. In this application we discuss corresponding post-design management strategies and estimate system longevity, as well as discuss the potential for the inclusion of wetlands as part of an integrated wastewater treatment strategy for cold climates in northern Canada.
Because of the logistical challenges in gathering the type of information described above, most regulatory agencies have tended to view the tundra wetlands as unknowable and unpredictable and therefore of little use as part of a formally recognized wastewater treatment strategy. The focus of this paper is to: (i) highlight the treatment benefit many tundra wetlands are currently providing; and (ii) describe how the SubWet 2.0 wetland model can provide a predictive tool to help managers and regulators in the assessment of management options.
Readers desiring to know more about the design parameters of the SubWet model are directed to Foundations of Ecological Modelling (4th Ed.) edited by Sven Erik Jørgensen and Brian D. Fath [
27]. Chapter 7.6 of this edition profiles the SubWet model and provides an in-depth description of differential process equations, default parameters, forcing functions and output parameters. The SubWet model was originally designed by Sven Jørgensen and colleagues as part of the Danida project, promoting cooperation between Copenhagen and Dar es Salaan University in Tanzania. Software for this model was later developed by the United Nations Environmental Programme, International Environmental Technology Centre (UNEP-IETC), so that it could be used in developing countries to design subsurface flow constructed wetlands for the treatment of domestic wastewaters. In 2009, the SubWet model was further developed by Sven Jørgensen and the Centre for Alternative Wastewater Treatment, Fleming College, Canada for use with natural tundra wetlands of the Canadian arctic.