Green Infrastructure Design for Stormwater Runoff and Water Quality: Empirical Evidence from Large Watershed-Scale Community Developments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site

| Watershed | Drainage area (km2) | Development start date | Population | Household number | % Impervious cover (2009) |
|---|---|---|---|---|---|
| 1. Panther Creek (Woodlands, GI) | 89.4 | 1974 | 66,143 | 24,655 | 32.3 |
| 2. Bear Creek(comparative) | 55.7 | 1976 | 33,763 | 9,559 | 13.7 |




2.2. Data
2.2.1. Development Data
2.2.2. Soil Data
2.2.3. Precipitation Data
2.2.4. Streamflow and Water Quality Data
2.3. Analysis
3. Results
3.1. Impervious Cover

3.2. Hydrologic Soil Group Distribution
| Hydrologic soil groups | Site 1 (GI) | Site 2 (conventional) |
|---|---|---|
| A | 8.3% | 0 |
| B | 30.4% | 80.2% |
| C | 40.1% | 9.8% |
| D | 19.9% | 9.0% |
| Water | 1.2% | 0.9% |

3.3. Precipitation and Streamflow



3.4. Nutrient Export Loading

| Nutrient | R2 | Equation | P-value | Sample size (2002–2009) |
|---|---|---|---|---|
| NH3-N | 0.108 | NA | 0.427 | 58 |
| NO3-N | 0.001 | NA | 0.930 | 33 |
| TP | 0.028 | NA | 0.693 | 33 |
| Nutrient | R2 | Equation | P-value | Sample size (2002–2009) |
|---|---|---|---|---|
| NH3-N | 0.829 | y = 0.028x − 0.002 | 0.004 | 78 |
| NO3-N | 0.894 | y = 0.666x − 0.046 | 0.004 | 57 |
| TP | 0.923 | y = 0.12x − 0.007 | 0.002 | 56 |
4. Discussion
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Arnold, C.L.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Booth, D.B.; Jackson, C.R. Urbanization of aquatic systems: Degradation thresholds, stormwater detection, and the limits of mitigation. J. Am. Water Resour. Assoc. 1997, 33, 1077–1090. [Google Scholar] [CrossRef]
- Alberti, M.; Booth, D.; Hill, K.; Coburn, B.; Avolio, C.; Coe, S.; Spirandelli, D. The impact of urban patterns on aquatic ecosystems: An empirical analysis in Puget lowland sub-basins. Landsc. Urban Plan. 2007, 80, 345–361. [Google Scholar] [CrossRef]
- Olivera, F.; DeFee, B.B. Urbanization and its effect on runoff in the Whiteoak Bayou watershed, Texas. J. Am. Water Resour. Assoc. 2007, 43, 170–182. [Google Scholar] [CrossRef]
- Pomeroy, C.A.; Roesner, L.A. Tools for the Evaluation of Stormwater Management Practices that Provide Ecological Stability in Urban Streams. In Cities of the Future: Towards Integrated Sustainable Water and Landscape Management; Novotny, V., Breckenridge , L., Brown, P., Eds.; IWA Publishing: London, UK, 2007; pp. 174–190. [Google Scholar]
- Sung, C.Y.; Li, M.-H. The effect of urbanization on stream hydrology in hillslope watersheds in central Texas. Hydrol. Process. 2010, 24, 3706–3717. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Managing Wet Weather with Green Infrastructure: Action Strategy 2008. Available online: http://www.epa.gov/npdes/pubs/gi_action_strategy.pdf (accessed on 5 June 2012).
- Brabec, E. Imperviousness and land use policy: Toward an effective approach to watershed planning. J. Hydrol. Eng. 2009, 14, 425–433. [Google Scholar] [CrossRef]
- Schueler, T.R. The importance of imperviousness. Watershed Prot. Tech. 1994, 1, 100–111. [Google Scholar]
- Schueler, T.R. Impacts of Impervious Cover on Aquatic Systems; Watershed Protection Research Monograph No. 1; Center for Watershed Protection: Ellicott City, MD, USA, 2003. [Google Scholar]
- Brabec, E.; Schulte, S.; Richards, P.L. Impervious surfaces and water quality: A review of current literature and its implications for watershed planning. J. Plan. Lit. 2002, 16, 499–514. [Google Scholar] [CrossRef]
- Wang, L.; Lyons, J.; Kanehl, P.; Bannerman, R.T. Impacts of urbanization on stream habitat and fish across multiple scales. Environ. Manag. 2001, 28, 255–266. [Google Scholar] [CrossRef]
- Allan, D.J. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Greve, A.I. Linking urban form, land cover pattern, and hydrologic flow regime in the Puget Sound Lowland. Urban Ecosyst. 2012, 15, 437–450. [Google Scholar] [CrossRef]
- Klein, R.D. Urbanization and stream quality impairment. Water Resourc. Bull. 1979, 15, 948–963. [Google Scholar] [CrossRef]
- Booth, D.B.; Karr, J.R.; Schauman, S.; Konrad, C.P.; Morley, S.A.; Larson, M.G.; Burges, S.J. Reviving urban streams: Land use, hydrology, biology, and human behavior. J. Am. Water Resour. Assoc. 2007, 40, 1351–1364. [Google Scholar]
- Schueler, T.R.; Fraley-McNeal, L.; Cappiella, K. Is impervious cover still important? Review of recent research. J. Hydrol. Eng. 2009, 14, 309–315. [Google Scholar] [CrossRef]
- Ferguson, B.K. Storm-water infiltration for peak-flow control. J. Irrig. Drain. Eng. 1995, 121, 463–466. [Google Scholar] [CrossRef]
- Ferguson, B.K. Introduction to Stormwater; John Wiley and Sons: New York, NY, USA, 1998. [Google Scholar]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Scholes, L.; Revitt, D.M.; Ellis, J.B. A systematic approach for the comparative assessment of stormwater pollutant removal potentials. J. Environ. Manag. 2008, 88, 467–478. [Google Scholar] [CrossRef]
- Ellis, J.B.; Marsalek, J. Overview of urban drainage: Environmental impacts and concerns, means of mitigation and implementation policies. J. Hydraul. Res. 1996, 34, 723–731. [Google Scholar] [CrossRef]
- Maxted, J.; Shaver, E.; Council, A.R. The Use of Retention Basins to Mitigate Stormwater Impacts to Aquatic Life. In Proceedings of National Conference on Retrofit Opportunities for Water Resource Protection in Urban Environments, EPA/625/R-99/002, Chicago, IO, USA, 9–12 February 1998.
- Perez-Pedini, C.; Limbrunner, J.F.; Vogel, R.M. Optimal location of infiltration-based best management practices for storm water management. J. Water Resourc. Plan. Manag. 2005, 131, 441–448. [Google Scholar] [CrossRef]
- Prince George’s County, Department of Environmental Resources. Low-Impact Development Design Strategies: An Integrated Design Approach; Department of Environmental Resources, Programs and Planning Division: Prince George’s County, MD, USA, 1999. [Google Scholar]
- Benedict, M.A.; McMahon, E.T. Green Infrastructure: Linking Landscapes and Communities; Island Press: Washington, DC, USA, 2006. [Google Scholar]
- Tzoulas, K.; Korpela, K.; Venn, S.; Yli-Pelkonen, V.; Kaźmierczak, A.; Niemela, J.; James, P. Promoting ecosystem and human health in urban areas using green infrastructure: A literature review. Landsc. Urban Plan. 2007, 81, 167–178. [Google Scholar] [CrossRef]
- Bergen, S.D.; Bolton, S.M.; Fridley, J.L. Design principles for ecological engineering. Ecol. Eng. 2001, 18, 201–210. [Google Scholar] [CrossRef]
- Todd, J.; Brown, E.J. G.; Wells, E. Ecological design applied. Ecol. Eng. 2003, 20, 421–440. [Google Scholar] [CrossRef]
- Villarreal, E.L.; Semadeni-Davies, A.; Bengtsson, L. Inner city stormwater control using a combination of best management practices. Ecol. Eng. 2004, 22, 279–298. [Google Scholar] [CrossRef]
- Yang, B.; Li, M.-H. Ecological engineering in a new town development: Drainage design in The Woodlands, Texas. Ecol. Eng. 2010, 36, 1639–1650. [Google Scholar] [CrossRef]
- Yang, B.; Li, M.-H.; Li, S. Design-with-Nature for Multifunctional Landscapes: Environmental Benefits and Social Barriers in Community Development. Int. J. Environ. Res. Public Health 2013, 10, 5433–5458. [Google Scholar] [CrossRef]
- Ahern, J. Green Infrastructure for Cities: The Spatial Dimension. In Cities of the Future: Towards Integrated Sustainable Water and Landscape Management; Novotny, V., Brown, P., Eds.; IWA Publishing: London, UK, 2007; pp. 267–283. [Google Scholar]
- Dietz, M. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. Stormwater runoff and export changes with development in a traditional and low impact subdivision. J. Environ. Manag. 2008, 87, 560–566. [Google Scholar] [CrossRef]
- Alley, W.M.; Veenhuis, J.E. Effective impervious area in urban runoff modeling. J. Hydraul. Eng. 1983, 109, 313–319. [Google Scholar] [CrossRef]
- Han, W.S.; Burian, S.J. Determining effective impervious area for urban hydrologic modeling. J. Hydrol. Eng. 2009, 14, 111–120. [Google Scholar] [CrossRef]
- Roy, A.H.; Shuster, W.D. Assessing impervious surface connectivity and applications for watershed management. J. Am. Water Resour. Assoc. 2009, 45, 198–209. [Google Scholar] [CrossRef]
- Mejía, A.I.; Glenn, E.M. Spatial patterns of urban development from optimization of flood peaks and imperviousness-based measures. J. Hydrol. Eng. 2009, 14, 416–424. [Google Scholar] [CrossRef]
- Holman-Dodds, J.K.; Bradley, A.A.; Potter, K.W. Evaluation of hydrologic benefits of infiltration based urban storm water management. J. Am. Water Resour. Assoc. 2003, 39, 205–215. [Google Scholar]
- Brander, K.E.; Owen, K.E.; Potter, K.W. Modeled impacts of development type on runoff volume and infiltration performance. J. Am. Water Resour. Assoc. 2004, 40, 961–969. [Google Scholar] [CrossRef]
- Pataki, D.E.; Carreiro, M.M.; Cherrier, J.; Grulke, N.E.; Jennings, V.; Pincetl, S.; Pouyat, R.V.; Whitlow, T.H.; Zipperer, W.C. Coupling biogeochemical cycles in urban environments: Ecosystem services, green solutions, and misconceptions. Front. Ecol. Environ. 2011, 9, 27–36. [Google Scholar] [CrossRef]
- Jaffe, M.; Zellner, M.; Minor, E.; Gonzalez-Meler, M.; Cotner, L.; Massey, D.; Ahmed, H.; Elberts, M.; Sprague, H.; Wise, S.; et al. Using Green Infrastructure to Manage Urban Stormwater Quality: A Review of Selected Practices and State Program. Available online: http://www.uic.edu/labs/minor/GreenInfrastructureStudy.pdf (accessed on 20 June 2012).
- American Society of Landscape Architects (ASLA). Green Infrastructure Project Database. Available online: http://www.asla.org/stormwatercasestudies.aspx (accessed on 15 August 2012).
- McHarg, I.L. A Quest for Life: An Autobiography; John Wiley and Sons: New York, NY, USA, 1996. [Google Scholar]
- Yang, B.; Li, M.-H. Assessing planning approaches by watershed streamflow modeling: Case study of the Woodlands, Texas. Landsc. Urban Plan. 2011, 99, 9–22. [Google Scholar] [CrossRef]
- Bedient, P.; Flores, A.; Johnson, S.; Pappas, P. Floodplain storage and land-use analysis at the Woodlands, Texas. Water Resour. Bull. 1985, 21, 543–551. [Google Scholar] [CrossRef]
- Wallace, McHarg, Roberts, and Todd (WMRT). Woodlands New Community: An Ecological Inventory; WMRT: Philadelphia, PA, USA, 1973. [Google Scholar]
- Wallace, McHarg, Roberts, and Todd (WMRT). Woodlands New Community: Guidelines for Site Planning; WMRT: Philadelphia, PA, USA, 1973. [Google Scholar]
- Wallace, McHarg, Roberts, and Todd (WMRT). Woodlands New Community: Phase One: Land Planning and Design Principles; WMRT: Philadelphia, PA, USA, 1973. [Google Scholar]
- Wallace, McHarg, Roberts, and Todd (WMRT). Woodlands New Community: An Ecological Plan; WMRT: Philadelphia, PA, USA, 1974. [Google Scholar]
- Kutchin, J.W. How Mitchell Energy & Development Corp. Got Its Start and How It Grew: An Oral History and Narrative Overview; Mitchell Energy & Development Corporation: The Woodlands, TX, USA, 1998. [Google Scholar]
- Forsyth, A. Planning lessons from three US new towns of the 1960s and 1970s—Irvine, Columbia, and The Woodlands. J. Am. Plan. Assoc. 2002, 68, 387–415. [Google Scholar] [CrossRef]
- Forsyth, A. Reforming Suburbia: The Planned Communities of Irvine, Columbia, and The Woodlands; University of California Press: Berkeley, CA, USA, 2005. [Google Scholar]
- Kim, J.; Ellis, C.D. Determining the effects of local development regulations on landscape structure: Comparison of The Woodlands and North Houston, TX. Landsc. Urban Plan. 2009, 92, 293–303. [Google Scholar] [CrossRef]
- Girling, C.L.; Helphand, K.I. Yard, Street, Park: The Design of Suburban Open Space; John Wiley and Sons: New York, NY, USA, 1994. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA). National Weather Service Storm Data and Unusual Weather Phenomena. 2000. Available online: http://www.srh.noaa.gov/hgx/severe/2000/apr00hgx.pdf (accessed on 5 December 2008).
- Galatas, R.; Barlow, J. The Woodlands: The Inside Story of Creating a Better Hometown; Urban Land Institute: Washington, DC, USA, 2004. [Google Scholar]
- Girling, C.L.; Kellett, R. Skinny Streets and Green Neighborhoods: Design for Environment and Community; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- West Houston Association (WHA). 2003 Demographic & Development Trends. WHA: Houston, TX, USA, 2003. [Google Scholar]
- U.S. Census Bureau (2011). Texas Gains the Most in Population Since the Census. Available online: http://www.census.gov/newsroom/releases/archives/population/cb11-215.html (accessed on 10 June 2012).
- City of Houston General Plan. Available online: http://www.houstontx.gov/planning/_GeneralPlan/cohPlans.html (accessed on 10 April 2012).
- U.S. Environmental Protection Agency (USEPA). Texas 2010 Integrated Report 303(d) List. Available online: http://www.tceq.texas.gov/assets/public/compliance/monops/water/10twqi/2010_303.pdf (accessed on 5 July 2012).
- Rogers, G.O.; DeFee, B.B. Long-term impact of development on a watershed: Early indicators of future problems. Landsc. Urban Plan. 2005, 73, 215–233. [Google Scholar]
- Shandas, V.; Alberti, M. Exploring the role of vegetation fragmentation on aquatic conditions: Linking upland with riparian areas in Puget Sound lowland streams. Landsc. Urban Plan. 2009, 90, 66–75. [Google Scholar]
- Light, D.L. The national aerial photography program as a geographic informaiton system resource. Photogramm. Eng. Remote Sens. 1993, 59, 61–65. [Google Scholar]
- Jennings, D.B.; Jarnagin, T.S. Changes in anthropogenic impervious surfaces, precipitation and daily streamflow discharge: A historical perspective in a mid-atlantic subwatershed. Landsc. Ecol. 2002, 17, 471–489. [Google Scholar]
- Texas Transportation Institute. GIS Road Data. Available online: http://tti.tamu.edu/group/transplanning/research-areas/gps-and-gis-analyses/ (accessed on 5 August 2008).
- Natural Resources Conservation Service (NRCS). Soil Survey Geographic (SSURGO) Data. Available online: http://soildatamart.nrcs.usda.gov/ (accessed on 5 March 2012).
- U.S. Department of Agriculture (USDA). National Soil Survey Handbook; Natural Resources Conservation Service (NRCS): Washington, DC, USA, 2002.
- National Climatic Data Center (NCDC). Daily Precipitation. Available online: http://www.ncdc.noaa.gov (accessed on 15 April 2012).
- Hann, C.T.; Barfield, B.J.; Hayes, J.C. Design Hydrology and Sedimentology for Small Catchments; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- U.S. Geological Survey. Daily Mean Streamflow. Available online: http://www.usgs.gov/ (accessed on 10 April 2012).
- Texas Commission on Environmental Quality (TCEQ). Surface Water Quality Monitoring Database; Texas Commission on Environmental Quality: Austin, TX, USA, 2012. [Google Scholar]
- Stone, J.B. Paving over paradise: How land use regulations promote residential imperviousness. Landsc. Urban Plan. 2004, 69, 101–113. [Google Scholar]
- Stone, B.; Bullen, J.L. Urban form and watershed management: How zoning influences residential stormwater volumes. Environ. Plan. B Plan. Design 2006, 33, 21–37. [Google Scholar]
- Community Associations of the Woodlands, Texas. Residential Development Standards; Community Associations of the Woodlands, Texas: The Woodlands, TX, USA, 1996. [Google Scholar]
- Houston, T.X. Code of Ordinances: Chapter 42 Subdivisions, Developments and Platting. Available online: http://library.municode.com/HTML/10123/level4/COOR_CH42SUDEPL_ARTIIIPLST_DIV2ST.html#COOR_CH42SUDEPL_ARTIIIPLST_DIV2ST_S42-122RI-WWI (accessed on 5 July 2012).
- Littlewood, I.G. Estimating Constituent Loads in Rivers: A Review; Report No. 117; Institute of Hydrology: Wallingford, UK, 1992. [Google Scholar]
- Littlewood, I.G. Hydrological regimes, sampling strategies, and assessment of errors in mass load estimates for United Kingdom rivers. Environ. Int. 1995, 21, 211–220. [Google Scholar]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention technology: Overview of current practice and future needs. J. Environ. Eng. 2009, 135, 109–117. [Google Scholar]
- Dietz, M.E.; Clausen, J.C. A field evaluation of rain garden flow and pollutant treatment. Water Air Soil Pollut. 2005, 167, 123–138. [Google Scholar]
- Ferguson, B.K. Porous Pavements; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Berndtsson, J.C. Green roof performance towards management of runoff water quantity and quality: A review. Ecol. Eng. 2010, 36, 351–360. [Google Scholar]
- Gregoire, B.G.; Clausen, J.C. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecol. Eng. 2011, 37, 963–969. [Google Scholar]
- Morgan, G.T.; King, J.O. The Woodlands: New Community Development 1964–1983; Texas A&M University Press: College Station, TX, USA, 1987. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Yang, B.; Li, S. Green Infrastructure Design for Stormwater Runoff and Water Quality: Empirical Evidence from Large Watershed-Scale Community Developments. Water 2013, 5, 2038-2057. https://doi.org/10.3390/w5042038
Yang B, Li S. Green Infrastructure Design for Stormwater Runoff and Water Quality: Empirical Evidence from Large Watershed-Scale Community Developments. Water. 2013; 5(4):2038-2057. https://doi.org/10.3390/w5042038
Chicago/Turabian StyleYang, Bo, and Shujuan Li. 2013. "Green Infrastructure Design for Stormwater Runoff and Water Quality: Empirical Evidence from Large Watershed-Scale Community Developments" Water 5, no. 4: 2038-2057. https://doi.org/10.3390/w5042038
APA StyleYang, B., & Li, S. (2013). Green Infrastructure Design for Stormwater Runoff and Water Quality: Empirical Evidence from Large Watershed-Scale Community Developments. Water, 5(4), 2038-2057. https://doi.org/10.3390/w5042038
