Stream Water and Groundwater Interaction Revealed by Temperature Monitoring in Agricultural Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Temperature Monitoring
2.3. Stream Conditions
Location | d60 (mm) | d10 (mm) | Uniformity coefficient (Cu) | Sorting | Effective grain size (de, cm) | K (m s−1) |
---|---|---|---|---|---|---|
HS1 | 0.89 | 0.15 | 6.14 | Poorly | 0.015 | 9.00 × 10−5 |
HS22 | 0.83 | 0.17 | 4.98 | Moderately | 0.017 | 1.73 × 10−4 |
HS4 | 0.95 | 0.25 | 3.83 | Well | 0.025 | 5.00 × 10−4 |
HS23 | 0.40 | 0.13 | 3.12 | Well | 0.013 | 1.35 × 10−4 |
HS7 | 0.80 | 0.13 | 6.06 | Poorly | 0.013 | 6.76 × 10−5 |
Mean | 0.77 | 0.17 | 4.83 | Moderately | 0.017 | 1.73 × 10−4 |
2.4. Time Series Analysis
2.5. Calculation of Vertical Water Flow Velocity
Parameter | Symbol | Value | Unit |
---|---|---|---|
Density of water | ρf | 998 | kg/m3 |
Density of the saturated sediment | ρb | 2650 | kg/m3 |
Heat capacity of water | cf | 4183 | J kg/K |
Heat capacity of saturated sediment | cb | 750 | J kg/K |
3. Results and Discussion
3.1. Vertical Distribution of Groundwater Temperatures
3.2. Recorded Time Series Data
Parameters | Location | Maximum | Minimum | Mean | Range | CV |
---|---|---|---|---|---|---|
Air temperature (°C) | AWS | 21.6 | −7.0 | 6.8 | 28.6 | 0.92 |
HG0 | 25.6 | −5.5 | 8.9 | 31.1 | 0.73 | |
Rainfall (mm h−1) | AWS | 6.0 | 0.0 | 0.02 | 6.0 | 14.51 |
Air pressure (hPa) | AWS | 1034.3 | 1008.5 | 1021.2 | 25.8 | 0.01 |
Groundwater level (m, depth to water) | HG0 | 1.16 | 0.96 | 1.08 | 0.20 | 0.05 |
HG4 | 2.27 | 2.03 | 2.18 | 0.24 | 0.03 | |
GW temperature (°C) | HG0 | 16.3 | 13.7 | 15.2 | 2.6 | 0.05 |
HG4 | 12.3 | 11.4 | 11.9 | 0.9 | 0.03 | |
Stream water level (cm, depth to stream bottom) | HS1 | 36.1 | 5.4 | 20.0 | 30.6 | 0.27 |
HS22 | 39.5 | 24.5 | 32.9 | 14.9 | 0.10 | |
HS4 | 39.7 | 28.6 | 34.4 | 11.1 | 0.07 | |
HS7 | 54.0 | 44.2 | 49.3 | 9.9 | 0.04 | |
SW temperature (°C) | HS1 | 18.6 | 3.2 | 11.2 | 13.7 | 0.28 |
HS22 | 17.8 | 2.9 | 9.1 | 14.9 | 0.36 | |
HS4 | 14.2 | 3.8 | 9.0 | 10.5 | 0.31 | |
HS23 | 18.1 | 2.0 | 9.1 | 16.1 | 0.40 | |
HS7 | 18.9 | 2.4 | 9.6 | 16.6 | 0.37 | |
Streambed temperature (°C; depth = 10 cm) | HS1 | 17.1 | 4.1 | 11.6 | 13.0 | 0.30 |
HS22 | 16.9 | 2.3 | 8.7 | 14.6 | 0.37 | |
HS4 | 14.3 | 2.5 | 8.7 | 11.8 | 0.34 | |
HS23 | 21.4 | 0.9 | 8.6 | 20.5 | 0.52 | |
HS7 | 15.4 | 3.9 | 10.2 | 11.5 | 0.31 | |
Sediment temperature (°C; depth = 10 cm) | HS1 | 19.1 | 11.1 | 14.9 | 8.0 | 0.11 |
HS22 | 16.9 | 1.0 | 7.4 | 15.9 | 0.57 | |
HS4 | 17.4 | 3.8 | 10.3 | 13.6 | 0.35 | |
HS23 | 19.3 | 1.0 | 8.8 | 18.3 | 0.50 | |
HS7 | 16.1 | 3.4 | 9.6 | 12.8 | 0.37 |
3.3. Auto-Correlation
3.4. Cross-Correlation
Location | Stream water temperature | Streambed temperature | Adjacent sediment temperature | |||
---|---|---|---|---|---|---|
Peak r | Lag (hour) | Peak r | Lag (hour) | Peak r | Lag (hour) | |
HS1 | 0.748 | 1 | 0.850 | 3 | 0.864 | 3 |
HS22 | 0.903 | 1 | 0.919 | 2 | 0.763 | 4 |
HS4 | 0.848 | 1 | 0.874 | 1 | 0.823 | 4 |
HS23 | 0.890 | 0 | 0.886 | 0 | 0.858 | 2 |
HS7 | 0.893 | 1 | 0.792 | 3 | 0.816 | 5 |
Mean | 0.856 | 0.8 | 0.864 | 1.8 | 0.825 | 3.6 |
3.5. Vertical Flow Velocity and Groundwater-Stream Interaction
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Woessner, W.W. Stream and fluvial plain ground water interactions: Rescaling hydrogeologic thought. Ground Water 2000, 38, 423–429. [Google Scholar] [CrossRef]
- Keery, J.; Binley, A.; Crook, N.; Smith, J.W.N. Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series. J. Hydrol. 2007, 336, 1–16. [Google Scholar] [CrossRef]
- Anderson, M.S.; Acworth, R.I. Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, New South Wales, Australia. Hydrogeol. J. 2009, 17, 2005–2021. [Google Scholar] [CrossRef]
- Wroblicky, G.J.; Campana, M.E.; Valett, H.M.; Dahm, C.N. Seasonal variation in surface-subsurface water exchange and lateral hyporheic area of two stream-aquifer systems. Water Resour. Res. 1998, 34, 317–328. [Google Scholar] [CrossRef]
- Hinkle, S.R.; Duff, J.H.; Triska, F.J.; Laenen, A.; Gates, E.B.; Bencala, K.E.; Wentz, D.A.; Silva, S.R. Linking hyporheic flow and nitrogen cycling near the Willamette River-a large river in Oregon, USA. J. Hydrol. 2001, 244, 157–180. [Google Scholar] [CrossRef]
- Anderson, M.P. Heat as a ground water tracer. Ground Water 2005, 43, 951–968. [Google Scholar] [CrossRef]
- Lautz, L.K.; Siegel, D.I. Modeling surface and groundwater mixing in the hyporheic zone using MODFLOW and MT3D. Adv. Water Resour. 2006, 29, 1618–1633. [Google Scholar] [CrossRef]
- Soulsby, C.; Tetziaff, D.; van den Bedem, N.; Malcolm, I.A.; Bacon, P.J.; Youngson, A.F. Inferring groundwater influences on surface water in montane catchments from hydrochemical surveys of springs and streamwaters. J. Hydrol. 2007, 333, 199–213. [Google Scholar] [CrossRef]
- Essaid, H.I.; Zamora, C.M.; Mccarthy, K.A.; Vogel, J.R.; Wilson, J.T. Using heat to characterize streambed water flux variability in four stream reaches. J. Environ. Qual. 2008, 37, 1010–1023. [Google Scholar] [CrossRef]
- Rau, G.C.; Anderson, M.S.; Mccallum, A.M.; Acworth, R.I. Analytical methods that use natural heat as a tracer to quantify surface water-groundwater exchange, evaluated using field temperature records. Hydrogeol. J. 2010, 18, 1093–1110. [Google Scholar] [CrossRef]
- Lee, J.Y. Environmental issues of groundwater in Korea: Implications for sustainable use. Environ. Conserv. 2011, 38, 64–74. [Google Scholar] [CrossRef]
- Owor, M.; Taylor, R.; Mukwaya, C.; Tindimugaya, C. Groundwater/surface-water interactions on deeply weathered surfaces of low relief: Evidence from Lakes Victoria and Kyoga, Uganda. Hydrogeol. J. 2011, 19, 1403–1420. [Google Scholar] [CrossRef]
- Constantz, J. Heat as a tracer to determine streambed water exchanges. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Stonestrom, D.A.; Constantz, J. Heat as a Tool for Studying the Movement of Ground Water near Streams; USGS: Reston, VA, USA, 2003. [Google Scholar]
- Silliman, S.E.; Booth, D.F. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. J. Hydrol. 1993, 146, 131–148. [Google Scholar] [CrossRef]
- Stallman, R.W. Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J. Geophy. Res. 1965, 70, 2821–2827. [Google Scholar] [CrossRef]
- Loheide, S.P., II; Gorelick, S.M. Quantifying stream-aquifer interactions through the analysis of remotely sensed thermographic profiles and in situ temperature histories. Environ. Sci. Tech. 2006, 40, 3336–3341. [Google Scholar] [CrossRef]
- Baskaran, S.; Brodie, R.S.; Ransley, T.; Baker, P. Time-series measurements of stream and sediment temperature for understanding river-groundwater interactions: Border Rivers and Lower Richmond catchments, Australia. Austral. J. Earth Sci. 2009, 56, 21–30. [Google Scholar] [CrossRef]
- Lapham, W.W. Use of Temperature Profiles Beneath Streams to Determine Rates of Vertical Ground-Water Flow and Vertical Hydraulic Conductivity; US Department of Interior: Denver, CO, USA, 1989. [Google Scholar]
- Silliman, S.E.; Ramirez, J.; McCabe, R.L. Quantifying downflow through creek sediments using temperature time series: One-dimensional solution incorporating measured surface temperature. J. Hydrol. 1995, 167, 99–119. [Google Scholar] [CrossRef]
- Conant, B., Jr. Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water 2004, 42, 243–257. [Google Scholar] [CrossRef]
- Holzbecher, E. Inversion of temperature time series from near-surface porous sediments. J. Geophy. Eng. 2005, 2, 343–348. [Google Scholar] [CrossRef]
- Hatch, C.E.; Fisher, A.T.; Revenaugh, J.S.; Constantz, J.; Ruehl, C. Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Lautz, L.K. Impacts of nonideal field conditions on vertical water velocity estimates from streambed temperature time series. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Hubbart, J.; Link, T.; Campbell, C.; Cobos, D. Evaluation of a low-cost temperature measurement system for environmental applications. Hydrol. Proc. 2005, 19, 1517–1523. [Google Scholar] [CrossRef]
- Johnson, A.N.; Boer, B.R.; Woessner, W.W.; Stanford, J.A.; Poole, G.C.; Thomas, S.A.; ODaniel, S.J. Evaluation of an inexpensive small-diameter temperature logger for documenting ground water-river interactions. Ground Water Monit. Remed. 2005, 25, 68–74. [Google Scholar]
- Wolaver, B.D.; Sharp, J.M., Jr. Thermochron iButton: Limitation of this inexpensive and small-diameter temperature logger. Ground Water Monit. Remed. 2007, 27, 127–128. [Google Scholar] [CrossRef]
- Lee, J.Y. Importance of hydrogeological and hydrologic studies for Haean basin in Yanggu. J. Geol. Soc. Korea 2009, 45, 405–414, (in Korean with English abstract). [Google Scholar]
- Lee, J.Y.; Lee, K.S.; Park, Y.; Choi, H.M.; Jo, Y.J. Chemical and isotopic compositions of groundwater and stream water in a heavy agricultural basin of Korea. J. Geol. Soc. India 2013, 82, 169–180. [Google Scholar] [CrossRef]
- Yun, S.W.; Jo, Y.J.; Lee, J.Y. Comparison of groundwater recharges estimated by waterlevel fluctuation and hydrograph separation in Haean basin of Yanggu. J. Geol. Soc. Korea 2009, 45, 391–404, (in Korean with English abstract). [Google Scholar]
- Roznik, E.A.; Alford, R.A. Does waterproofing thermochron iButton dataloggers influence temperature readings? J. Therm. Bio. 2012, 37, 260–264. [Google Scholar] [CrossRef]
- O’Driscoll, M.A.; Dewalle, D.R. Stream-air temperature relations to classify stream-ground water interactions in a karst setting, central Pennsylvania, USA. J. Hydrol. 2006, 329, 140–153. [Google Scholar] [CrossRef]
- Fetter, C.W. Applied Hydrogeology, 4th ed.; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Hazen, A. Discussion of “Dams on sand formations” by A.C. Koenig. Trans. Amer. Soc. Civil Eng. 1911, 73, 199–203. [Google Scholar]
- Larocque, M.; Mangin, A.; Razack, M.; Banton, O. Contribution of correlation and spectral analyses to the regional study of a karst aquifer (Charente, France). J. Hydrol. 1998, 205, 217–231. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, K.K. Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. J. Hydrol. 2000, 229, 190–201. [Google Scholar] [CrossRef]
- Crosbie, R.S.; Binning, P.; Kalma, J.D. A time series approach to inferring groundwater recharge using the water table fluctuation method. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Angelini, P. Correlation and spectral analysis of two hydrogeological systems in Central Italy. Hydrol. Sci. J. 1997, 42, 425–439. [Google Scholar] [CrossRef]
- Bravo, H.R.; Jiang, F.; Hunt, R.J. Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resour. Res. 2002, 38. [Google Scholar] [CrossRef]
- Padilla, A.; Pulido-Bosch, A. Study of hydrographs of karstic aquifers by means of correlation and cross-spectral analysis. J. Hydrol. 1995, 168, 73–89. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological statistics package for education and data analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Ge, S. Estimation of groundwater velocity in localized fracture zones from well temperature profiles. J. Volcanol. Geotherm. Res. 1998, 84, 93–101. [Google Scholar] [CrossRef]
- Salem, Z.E.; Taniguchi, M.; Sakura, Y. Use of temperature profiles and stable isotopes to trace flow lines: Nagaoka area, Japan. Ground Water 2004, 42, 83–91. [Google Scholar] [CrossRef]
- Constantz, J.; Tyler, S.W.; Kwicklis, E. Temperature-profile methods for estimating percolation rates in arid environments. Vadose Zone J. 2003, 2, 12–24. [Google Scholar]
- Hallberg, G.R. Pesticides pollution of groundwater in the humid United States. Agri. Ecosys. Environ. 1989, 26, 299–367. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hahn, J.S. Characterization of groundwater temperature obtained from the Korean national groundwater monitoring stations: Implications for heat pumps. J. Hydrol. 2006, 329, 514–526. [Google Scholar] [CrossRef]
- Constantz, J.; Thomas, C.L. The use of streambed temperature profiles to estimate the depth, duration, and rate of percolation beneath arroyos. Water Resour. Res. 1996, 32, 3597–3602. [Google Scholar] [CrossRef]
- Vogt, T.; Schneider, P.; Hahn-woernle, L.; Cirpka, O.A. Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling. J. Hydrol. 2010, 380, 154–164. [Google Scholar] [CrossRef]
- Younus, M.; Hondzo, M.; Engel, B.A. Stream temperature dynamics in upland agricultural watersheds. J. Environ. Eng. 2000, 126, 518–526. [Google Scholar] [CrossRef]
- Su, G.W.; Jasperse, J.; Seymour, D.; Constantz, J. Estimation of hydraulic conductivity in an alluvial system using temperatures. Ground Water 2004, 42, 890–901. [Google Scholar] [CrossRef]
- Lee, J.Y.; Choi, J.C.; Yi, M.J.; Kim, J.W.; Cheon, J.Y.; Lee, K.K. Evaluation of groundwater chemistry affected by an abandoned metal mine within a dam construction site, South Korea. Quar. J. Eng. Geol. Hydrogeol. 2004, 37, 241–256. [Google Scholar] [CrossRef]
- Wilson, J.L.; Guan, H. Mountain-block hydrology and mountain front recharge. In Groundwater Recharge in a Desert Environment: The Southwestern United States; American Geophysical Union: Washington, DC, USA, 2004. [Google Scholar]
- Covino, T.P.; McGlynn, B.L. Stream gains and losses across a mountain-to-valley transition: Impacts on watershed hydrology and stream water chemistry. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Winde, F.; van der Walt, I.J. The significance of groundwater-stream interactions and fluctuating stream chemistry on waterborne uranium contamination of streams-a case study from a gold mining site in South Africa. J. Hydrol. 2004, 287, 178–196. [Google Scholar] [CrossRef]
- Krause, S.; Bronstert, A.; Zehe, E. Groundwater-surface water interactions in a North German lowland floodplain—Implications for the river discharge dynamics and riparian water balance. J. Hydrol. 2007, 347, 404–417. [Google Scholar] [CrossRef]
- Schmidt, C.; Conant, B., Jr.; Bayer-Raich, M.; Schirmer, M. Evaluation and field-scale application of an analytical method to quantify groundwater discharge using mappled streambed temperatures. J. Hydrol. 2007, 347, 292–307. [Google Scholar] [CrossRef]
- Anibas, C.; Buis, K.; Verhoeven, R.; Meire, P.; Batelaan, O. A simple thermal mapping method for seasonal spatial patterns of groundwater-surface water interaction. J. Hydrol. 2011, 397, 93–104. [Google Scholar] [CrossRef]
- Becker, M.W.; Georgian, T.; Ambrose, H.; Siniscalchi, J.; Fredrick, K. Estimating flow and flux of ground water discharge using water temperature and velocity. J. Hydrol. 2004, 296, 221–233. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Lee, J.-Y.; Lim, H.S.; Yoon, H.I.; Park, Y. Stream Water and Groundwater Interaction Revealed by Temperature Monitoring in Agricultural Areas. Water 2013, 5, 1677-1698. https://doi.org/10.3390/w5041677
Lee J-Y, Lim HS, Yoon HI, Park Y. Stream Water and Groundwater Interaction Revealed by Temperature Monitoring in Agricultural Areas. Water. 2013; 5(4):1677-1698. https://doi.org/10.3390/w5041677
Chicago/Turabian StyleLee, Jin-Yong, Hyoun Soo Lim, Ho Il Yoon, and Youngyun Park. 2013. "Stream Water and Groundwater Interaction Revealed by Temperature Monitoring in Agricultural Areas" Water 5, no. 4: 1677-1698. https://doi.org/10.3390/w5041677