Next Article in Journal
Chemicals and Allied Products Waste Treatment
Previous Article in Journal
Tailored Watershed Assessment and Integrated Management (TWAIM): A Systems Thinking Approach
Open AccessArticle

Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis

Civil Engineering Department, North Carolina A&T State University, 1601 E. Market St., Greensboro, NC 27410, USA
Water 2011, 3(2), 604-617; https://doi.org/10.3390/w3020604
Received: 6 April 2011 / Revised: 1 May 2011 / Accepted: 23 May 2011 / Published: 3 June 2011
This paper describes the hydrological assessment of an agricultural watershed in the Midwestern United States through the use of a watershed scale hydrologic model. The Soil and Water Assessment Tool (SWAT) model was applied to the Maquoketa River watershed, located in northeast Iowa, draining an agriculture intensive area of about 5,000 km2. The inputs to the model were obtained from the Environmental Protection Agency’s geographic information/database system called Better Assessment Science Integrating Point and Nonpoint Sources (BASINS). Meteorological input, including precipitation and temperature from six weather stations located in and around the watershed, and measured streamflow data at the watershed outlet, were used in the simulation. A sensitivity analysis was performed using an influence coefficient method to evaluate surface runoff and baseflow variations in response to changes in model input hydrologic parameters. The curve number, evaporation compensation factor, and soil available water capacity were found to be the most sensitive parameters among eight selected parameters. Model calibration, facilitated by the sensitivity analysis, was performed for the period 1988 through 1993, and validation was performed for 1982 through 1987. The model was found to explain at least 86% and 69% of the variability in the measured streamflow data for calibration and validation periods, respectively. This initial hydrologic assessment will facilitate future modeling applications using SWAT to the Maquoketa River watershed for various watershed analyses, including watershed assessment for water quality management, such as total maximum daily loads, impacts of land use and climate change, and impacts of alternate management practices. View Full-Text
Keywords: calibration and validation; hydrologic simulation; sensitivity analysis; SWAT calibration and validation; hydrologic simulation; sensitivity analysis; SWAT
Show Figures

Figure 1

MDPI and ACS Style

Jha, M.K. Evaluating Hydrologic Response of an Agricultural Watershed for Watershed Analysis. Water 2011, 3, 604-617.

Show more citation formats Show less citations formats

Article Access Map by Country/Region

1
Only visits after 24 November 2015 are recorded.
Back to TopTop