Phosphorus Accumulation Pattern in a Subsurface Constructed Wetland Treating Residential Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
Parameter | Value |
---|---|
Person equivalents, (PE) | 150 |
Daily flow of wastewater | |
Max | 24 m3 d–1 |
Average (winter/summer) | 16 m3 d–1 / 20 m3 d–1 |
Pre-treatment: | |
3-chamber septic tank | Tank volume: 55 m3 |
Biological treatment: | |
HSF CW (2 parallel beds) | Total surface: 1980 m2 (2 × 990 m2) |
Bed length: 33 m | |
Bed width: 30 m | |
Bed depth: 0.6 m | |
Hydraulic retention time (HRT) | 8.6 d |
Hydraulic loading rate (HLR) | 0.024 m3 m–2 d–1 |
Organic load (Dry matter) | 6.4 g m–2 d–1 |
Phosphorus load (SRP) | 0.15 g m–2 d–1 |
Gravel (>2mm) | Sand (0.05–2mm) | Organic matter | Al | Ca | Fe | Porosity | pH |
---|---|---|---|---|---|---|---|
% | % dry matter | % | in KCl | ||||
1.72 ± 0.72 | 97.81 ± 3.58 | 0.67 ± 5 | 0.062 ± 0.01 | 0.301 ± 0.01 | 0.144 ± 0.015 | 37 ± 5 | 7.11 ± 2 |
2.2. Analyses of Samples from the Wetland Soil Matrix
2.3. Batch Sorption Experiment
3. Results
3.1. Accumulation and Distribution of P, OM and Ca
3.2. Phosphorus Sorption Capacity of the Substrate
4. Discussion
5. Conclusions
Acknowledgements
References
- Vymazal, J.; Kröpfelová, L. Removal of organics in constructed wetlands with horizontal sub-surface flow: A review of the field experience. Sci. Total Environ. 2009, 407, 3911–3922. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J.; Brix, H.; Cooper, P.F.; Haberl, R.; Perfler, R.; Laber, J. Removal mechanisms and types of constructed wetlands. In Constructed Wetlands for Wastewater Treatment in Europe; Backhuys Publishers: Leiden, The Netherlands, 1998; pp. 17–66. [Google Scholar]
- Vymazal, J. Removal of phosphorus in constructed wetlands with horizontal sub-surface flow in the Czech Republic. Water Air Soil Pollut. 2004, 4, 657–670. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of phosphorus in constructed wetlands with horizontal subsurface flow in the Czech Republic. In Nutrient Cycling and Retention in Natural and Constructed Wetlands; Vymazal, J., Ed.; Backhuys Publishers: Leiden, The Netherlands, 1999; pp. 73–83. [Google Scholar]
- Richardson, C.J.; Craft, C.B. Effective phosphorus retention in wetlands: Fact or fiction? In Constructed Wetlands for Water Quality Improvement; Moshiri, G.A., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 271–282. [Google Scholar]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands; Lewis-CRC Press: Boca Raton, FL, USA, 1996. [Google Scholar]
- Drizo, A.; Frost, A.C.; Smith, K.A.; Grace, J. The use of constructed wetlands in phosphate and ammonium removal from wastewater. Wat. Sci. Technol. 1997, 35, 95–102. [Google Scholar] [CrossRef]
- Drizo, A.; Frost, A.C.; Smith, K.A.; Grace, J. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Res. 1999, 33, 3595–3602. [Google Scholar] [CrossRef]
- Brix, H.; Arias, C.A.; Del Bubba, M. Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands. Wat. Sci. Technol. 2001, 44, 47–54. [Google Scholar]
- Karczmarczyk, A.; Mosiej, J. Upgrading of phosphorus removal efficiency in subsurface flow constructed wetlands. Scientific Papers of Białystok Technical University. Tech. Sci. Environ. Eng. 2003, 16, 227–232. (in Polish). [Google Scholar]
- Seo, D.C.; Cho, J.S.; Lee, H.J.; Heo, J.S. Phosphorus retention capacity of filter media for estimation the longevity of constructed wetland. Water Res. 2005, 39, 2445–2457. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Jenssen, P.D.; Mæhlum, T.; Krogstad, T. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)—Potential filter media in treatment wetlands. Wat. Sci. Techol. 1997, 35, 103–108. [Google Scholar] [CrossRef]
- Mæhlum, T. Cold-climate constructed wetlands: Aerobic pre-treatment and horizontal subsurface flow systems for domestic sewage and landfill leachate purification. Ph.D. Thesis, Agricultural University of Norway, Aas, Norway, 1998. [Google Scholar]
- Drizo, A.; Forget, C.; Chapuis, R.P.; Comeau, Y. Phosphorus removal by electric arc furnace (EAF) steel slag and serpentinite. Water Res. 2006, 40, 1547–1554. [Google Scholar] [CrossRef] [PubMed]
- Kadlec, R.H. Aging phenomena in wastewater wetlands. In Ecological Considerations in Wetlands Treatment of Municipal Wastewaters; Godfrey, P.J., Kaynor, E.R., Pelczarski, S., Benforado, J., Eds.; Van Nostrand Reinhold Company: New York, NY, USA, 1985; pp. 338–350. [Google Scholar]
- Richardson, C.J. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science 1985, 228, 1424–1427. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol. Eng. 2005, 25, 478–490. [Google Scholar] [CrossRef]
- Sekułowicz, J.; Karczmarczyk, A.; Mosiej, J. The efficiency of organic matter and phosphorus removal from sewage in constructed wetlands. Water Environ. Rural Area 2006, 6, 305–316. (in Polish). [Google Scholar]
- Surfer 8, Contouring and 3D surface Mapping for Scientists and Engineers. Golden Software, Inc.: Golden, CO, USA, 2010. Available online: www.goldensoftware.com/products/surfer/surfer.shtml (accessed on 15 May 2010).
- Statgraphics Plus 5.1. StatPoint Technologies, Inc.: Warrenton, VA, USA, 2005. Available online: www.statgraphics.com (accessed on 15 May 2010).
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Drizo, A.; Forget, C.; Chapuis, R.P.; Comeau, Y. Phosphorus removal by EAF steel slag—A parameter for the estimation of the longevity of constructed wetland systems. Environ. Sci. Tech. 2002, 36, 4642–4648. [Google Scholar] [CrossRef]
- Westholm, L.J. Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment? Water Res. 2006, 40, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Vohla, C.; Kõiv, M.; Bavor, H.J.; Chazarenc, F.; Mander, Ü. Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecol. Eng. 2009. [Google Scholar] [CrossRef]
- Mausbach, M.J.; Richardson, J.L. Biogeochemical processes in hydric soil formation. Curr. Top. Wetland. Biogeo. 1994, 1, 68–128. [Google Scholar]
- Runge, E.C.A.; Riecken, F.F. Influence of natural drainage on the distribution and forms of phosphorus in some Iowa prairie soils. Soil Sci. Soc. Am. Proc. 1966, 30, 624–630. [Google Scholar] [CrossRef]
- Xu, D.; Xu, J.; Wu, J.; Muhammad, A. Studies on the phosphorus sorption capacity of substrates used in constructed wetland system. Chemosphere 2006, 63, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Mann, R. Phosphorus adsorption and desorption characteristics of constructed wetland gravels and steelworks by-products. Aust. J. Soil Resour. 1997, 35, 357–384. [Google Scholar]
- Gerritse, R.G. Mobility of phosphate from wastewater in calcareous sands of Rottnest Island (W.A.). Aust. J. Soil Res. 1993, 31, 235–244. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Mosiej, J. Bed media selection for effective phosphorus removal from wastewater in subsurface flow constructed wetlands. Ann. Warsaw Agricultural University SGGW, Land Reclam. 2003, 34, 65–72. [Google Scholar]
- Karczmarczyk, A.; Kietlińska, A.; Renman, G. A natural filter substrate for efficient phosphorus removal from wastewater—Column studies. Scientific Papers of Krakow Agricultural Academy. Environ. Eng. 2003, 24, 397–404. [Google Scholar]
- EPA/625/R-99: Manual. Constructed wetlands treatment of municipal wastewaters. National Risk Management Research Laboratory: Cincinnati, OH, USA, 2000.
- Jaguś, A. Removal of phosphorus at the beginning of reed bed operation. Water Environ. Rural Area. 2002, 2, 237–245. (in polish). [Google Scholar]
- Mann, R.; Bavor, H.J. Phosphorus removal in constructed wetlands using gravel and industrial waste substrata. Water Sci. Tech. 1993, 27, 107–113. [Google Scholar]
- Karczmarczyk, A. Phosphorus removal from domestic wastewater in horizontal subsurface flow constructed wetland after 8 years of operation—A case study. J. Environ. Eng. Landsc. Manag. 2004, 12, 126–131. [Google Scholar]
- Kadlec, R.H.; Knight, R.L. Treatment Wetlands; CRC Press. Inc.: Boca Raton, FL, USA, 1996. [Google Scholar]
- Johansson, L.; Hylander, L. Phosphorus removal from wastewater by filter media: Retention and estimated plant availability of sorbed phosphorus. Zeszyty Problemowe Postępów Nauk Rolniczych 1998, 458, 397–409. [Google Scholar]
- Brogowski, Z.; Renman, G. Characterization of opoka as a basis for wastewater treatment. Polish J. Environ. Stud. 2004, 13, 15–20. [Google Scholar]
- Tanner, C.C.; Sukias, J.P.S.; Upsdell, M.P. Substratum phosphorus accumulation during maturation of gravel-bed constructed wetlands. Water Sci. Tech. 1999, 40, 147–154. [Google Scholar] [CrossRef]
- Tang, X.; Huang, S.; Ng, C.; Li, J. Enhancement of nitrogen and phosphorus removal in pilot-scale vertical subsurface flow-constructed wetlands using polypropylene pellets. Environ. Eng. Sci. 2009, 26, 621–631. [Google Scholar] [CrossRef]
- Tanner, C.C.; Sukias, J.P. Accumulation of organic solids in gravel-bed constructed wetlands. Water Sci. Tech. 1995, 32, 229–239. [Google Scholar] [CrossRef]
- Drizo, A.; Frost, A.C.; Smith, K.A.; Grace, J. Phosphate and ammonium distribution in constructed wetlands with horizontal subsurface flow, using shale as a substrate. Water Res. 2000, 34, 2483–2490. [Google Scholar] [CrossRef]
- Moshi, A.O.; Wild, A.; Greenland, D.J. Effect of organic matter on the charge phosphate adsorption characteristics of Kikuyu red clay from Kenya. Geoderma 1974, 11, 275–285. [Google Scholar] [CrossRef]
- Sanyal, S.K.; De Datta, S.K.; Chan, P.Y. Phosphate adsorption and desorption behavior of some acidic soils of south and Southeast Asia. Soil Sci. Soc. Am. J. 1993, 57, 937–945. [Google Scholar] [CrossRef]
- Renman, A. On-site wastewater treatment—Polonite and other filter materials for removal of metals, nitrogen and phosphorus. Ph.D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 2008. [Google Scholar]
© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Karczmarczyk, A.; Renman, G. Phosphorus Accumulation Pattern in a Subsurface Constructed Wetland Treating Residential Wastewater. Water 2011, 3, 146-156. https://doi.org/10.3390/w3010146
Karczmarczyk A, Renman G. Phosphorus Accumulation Pattern in a Subsurface Constructed Wetland Treating Residential Wastewater. Water. 2011; 3(1):146-156. https://doi.org/10.3390/w3010146
Chicago/Turabian StyleKarczmarczyk, Agnieszka, and Gunno Renman. 2011. "Phosphorus Accumulation Pattern in a Subsurface Constructed Wetland Treating Residential Wastewater" Water 3, no. 1: 146-156. https://doi.org/10.3390/w3010146
APA StyleKarczmarczyk, A., & Renman, G. (2011). Phosphorus Accumulation Pattern in a Subsurface Constructed Wetland Treating Residential Wastewater. Water, 3(1), 146-156. https://doi.org/10.3390/w3010146