Turbulence in a Bend in the Presence of Emergent Vegetation and a 3D Pool Bedform
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Longitudinal Velocity Distribution
3.2. Turbulent Kinetic Energy
3.3. Reynolds Stresses (RS)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, P.; Sharma, A. Impact of emergent vegetation on three-dimensional turbulent flow properties and bed morphology in a partially vegetated channel. Int. J. Sediment Res. 2025, 40, 286–311. [Google Scholar] [CrossRef]
- Raeisifar, H.; Rahimpour, A.R.; Afzalimehr, H.; Yagci, O.; Valyrakis, M. Experimental assessment of the turbulent flow field due to emergent vegetation at a sharply curved open channel. Water 2025, 17, 205. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, S.; Zhang, J.; Bilal, A. Numerical study of the effects of vegetation stem thickness on the flow characteristics of curved channels. Water Supply 2024, 24, 2218–2231. [Google Scholar] [CrossRef]
- Brethouwer, G. Turbulent flow in curved channels. J. Fluid Mech. 2022, 931, A21. [Google Scholar] [CrossRef]
- Anjum, N.; Iqbal, S.; Ali, M.; Pasha, G.A.; Ghumman, A.R. Investigation of flow behavior within staggered vegetation patches of various shapes in an open channel. J. Ecohydraulics 2025, 10, 319–337. [Google Scholar] [CrossRef]
- Rathod, L.V.; Timbadiya, P.V.; Barman, B. Turbulent flow structure in a symmetric compound channel with flexible emergent vegetation over floodplains. Ecohydrology 2025, 18, e2763. [Google Scholar] [CrossRef]
- Samadi Gharehveran, S.; Abbaspour, A.; Farsadizadeh, D.; Hosseinzadeh Dalir, A. Velocity distribution of open channel flow within submerged rigid vegetation with non-uniform height. ISH J. Hydraul. Eng. 2025, 31, 162–172. [Google Scholar] [CrossRef]
- Okhravi, S.; Sočuvka, V.; Schügerl, R.; Sokáč, M.; Dulovičová, R.; Velísková, Y. Vegetation effects on flow characteristics and sediment storage in a lowland river channel over time. In Proceedings of the 18th International Symposium on Water Management and Hydraulic Engineering, Štrbské Pleso, Slovakia, 10–14 September 2024. [Google Scholar]
- Tang, C.; Jia, H.; Zhang, S.; Yi, Y.; Dey, S. Hydrodynamics of turbulent flow in channels with submerged flexible vegetation canopy. Phys. Fluids 2025, 37, 032123. [Google Scholar] [CrossRef]
- Maji, S.; Hanmaiahgari, P.R.; Balachandar, R.; Pu, J.H.; Ricardo, A.M.; Ferreira, R.M. A review on hydrodynamics of free surface flows in emergent vegetated channels. Water 2020, 12, 1218. [Google Scholar] [CrossRef]
- Jordanova, A.A.; James, C.S. Experimental study of bed load transport through emergent vegetation. J. Hydraul. Eng. 2003, 129, 474–478. [Google Scholar] [CrossRef]
- Dunn, C.; Lopez, F.; Garcia, M.H. Mean Flow and Turbulence in a Laboratory Channel with Simulated Vegatation (HES 51); Hydraulic Engineering Series No. 51; University of Illinois: Urbana, IL, USA, 1996. [Google Scholar]
- Nepf, H.M. Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 1999, 35, 479–489. [Google Scholar] [CrossRef]
- Järvelä, J. Flow resistance of flexible and stiff vegetation: A flume study with natural plants. J. Hydrol. 2002, 269, 44–54. [Google Scholar] [CrossRef]
- Folkard, A.M. Vegetated flows in their environmental context: A review. Proc. Inst. Civ. Eng.-Eng. Comput. Mech. 2011, 164, 3–24. [Google Scholar] [CrossRef]
- Plew, D.R.; Cooper, G.G.; Callaghan, F.M. Turbulence-induced forces in a freshwater macrophyte canopy. Water Resour. Res. 2008, 44, W02414. [Google Scholar] [CrossRef]
- Tanino, Y.; Nepf, H.M.; Kulis, P.S. Gravity currents in aquatic canopies. Water Resour. Res. 2005, 41, W12402. [Google Scholar] [CrossRef]
- Ahmad, N.A.; Ali, Z.; Arish, N.A.M.; Daud, A.M.M.; Alias, N.F.A. Determination of flow resistance coefficient for vegetation in open channel: Laboratory study. IOP Conf. Ser. Earth Environ. Sci. 2018, 140, 012019. [Google Scholar] [CrossRef]
- Shumilova, O.O.; Sukhodolov, A.N. Flow dynamics in rivers with riffle-pool morphology: A dataset from case studies and field experiments. Sci. Data 2023, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Sharma, A. Turbulent flow mechanisms in meandering channels with sediment transport. Water Pract. Technol. 2023, 18, 484–500. [Google Scholar] [CrossRef]
- Nosrati, K.; Afzalimehr, H.; Raeisifar, H.; Nazari-Sharabian, M.; Karakouzian, M. Submerged rigid vegetation effects on flow hydrodynamics within the pool morphology. River 2024, 3, 260–271. [Google Scholar] [CrossRef]
- Nosrati, K.; Afzalimehr, H.; Sui, J. Interaction of irregular distribution of submerged rigid vegetation and flow within a straight pool. Water 2022, 14, 2036. [Google Scholar] [CrossRef]
- Kabiri, F.; Tabatabai, M.R.M.; Shayannejad, M. Effect of vegetative bed on flow structure through a pool-riffle morphology. Flow Meas. Instrum. 2022, 86, 102197. [Google Scholar] [CrossRef]
- Nosrati, K.; Rahm Rahimpour, A.; Afzalimehr, H.; Nazari-Sharabian, M.; Karakouzian, M. Experimental Investigation of Anisotropic Invariants in Streams with Rigid Vegetation and 3D Bedforms. Fluids 2024, 9, 282. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, Z.; Wang, F.; Liu, M. Large eddy simulation of the hydrodynamic behavior of horizontal side jets in compound open channels with vegetated floodplain. Environ. Sci. Pollut. Res. 2020, 27, 7967–7983. [Google Scholar] [CrossRef]
- Li, G.; Sui, J.; Sediqi, S. Hydrodynamic characteristics in pools with leafless vegetation under ice-covered flow conditions—An experimental study and numerical simulation. J. Hydrol. 2025, 657, 133135. [Google Scholar] [CrossRef]
- Wu, C.; Deng, J.; Zhou, X.; Gao, A.; Feng, K.; Zhu, C. Turbulence affected by submerged aquatic vegetation under wind-induced flow. Phys. Fluids 2025, 37, 015170. [Google Scholar] [CrossRef]
- Parvizi, P.; Afzalimehr, H.; Sui, J.; Raeisifar, H.R.; Eftekhari, A.R. Characteristics of Shallow Flows in a Vegetated Pool—An Experimental Study. Water 2023, 15, 205. [Google Scholar] [CrossRef]
- Nepf, H.M. Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 2012, 44, 123–142. [Google Scholar] [CrossRef]
- Goring, D.G.; Nikora, V.I. Despiking acoustic Doppler velocimeter data. J. Hydraul. Eng. 2002, 128, 117–126. [Google Scholar] [CrossRef]
- Wolman, M.G. A method of sampling coarse river-bed material. EOS Trans. Am. Geophys. Union 1954, 35, 951–956. [Google Scholar] [CrossRef]
- Okhravi, S.; Gohari, S.; Alemi, M.; Maia, R. Effects of bed-material gradation on clear water scour at single and group of piles. J. Hydrol. Hydromech. 2022, 70, 114–127. [Google Scholar] [CrossRef]
- Craig, R.G.; Loadman, C.; Clement, B.; Rusello, P.J.; Siegel, E. Characterization and testing of a new bistatic profiling acoustic Doppler velocimeter: The Vectrino-II. In Proceedings of the 2011 IEEE/OES 10th Current 2011, Waves and Turbulence Measurements (CWTM), Monterey, CA, USA, 20–23 March 2011; pp. 246–252. [Google Scholar] [CrossRef]
- Keulegan, G.H. Laws of Turbulent Flow in Open Channels; National Bureau of Standards: Gaithersburg, MD, USA, 1938. [CrossRef]
- Yang, K.; Cao, S.; Knight, D.W. Flow patterns in compound channels with vegetated floodplains. J. Hydraul. Eng. 2007, 133, 148–159. [Google Scholar] [CrossRef]
- Artini, G.; Francalanci, S.; Solari, L.; Aberle, J. Effects of leafy flexible vegetation and bedforms on turbulent flow and sediment transport. J. Geophys. Res. Earth Surf. 2025, 130, e2024JF007920. [Google Scholar] [CrossRef]
- Yagci, O.; Özgur Kirca, V.S.; Kitsikoudis, V.; Wilson, C.A.; Celik, M.F.; Sertkan, C. Experimental study on influence of different patterns of an emergent vegetation patch on the flow field and scour/deposition processes in the wake region. Water Resour. Res. 2024, 60, e2023WR034978. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Hassan, M.A.; Xu, M.; He, P. Hybrid modeling on 3D hydraulic features of a step-pool unit. Earth Surf. Dyn. Discuss. 2022, 2022, 1253–1272. [Google Scholar] [CrossRef]
- Lin, Y.T.; Huang, T.; Ji, J. Hydrodynamic Characteristics of Flows over Submerged and Flexible Vegetation in Strongly Curved Channels; SSRN: Rochester, NY, USA, 2023. [Google Scholar] [CrossRef]
- Maji, S.; Pal, D.; Hanmaiahgari, P.R.; Gupta, U.P. Hydrodynamics and turbulence in emergent and sparsely vegetated open channel flow. Environ. Fluid Mech. 2017, 17, 853–877. [Google Scholar] [CrossRef]
- Afzalimehr, H.; Rennie, C.D. Determination of bed shear stress in gravel-bed rivers using boundary-layer parameters. Hydrol. Sci. J. 2009, 54, 147–159. [Google Scholar] [CrossRef]
- Soldati, G.; Orlandi, P.; Pirozzoli, S. Reynolds number effects on turbulent flow in curved channels. J. Fluid Mech. 2025, 1007, A28. [Google Scholar] [CrossRef]
- Deitrick, A.R.; Hovendon, E.H.; Ralston, D.K.; Nepf, H. The influence of vegetation-generated turbulence on deposition in emergent canopies. Front. Mar. Sci. 2023, 10, 1266241. [Google Scholar] [CrossRef]






| Case | Q (lit/s) | b (m) | d50 (mm) | Vegetation Density (%) | Re | Fr |
|---|---|---|---|---|---|---|
| Bare case | 20 | 0.9 | 18.38 | 0 | 44,549 | 0.061 |
| Vegetated case | 20 | 0.9 | 18.38 | 2.61 | 44,839 | 0.062 |
| Metric | Location/Comparison | Quantitative Contrast |
|---|---|---|
| Turbulent kinetic energy (TKE) | Bend entrance to bend exit | Approximately seven times higher at the exit than at the entrance (vegetated case). |
| Reynolds shear stress | Pool section (vegetated) vs. corresponding bare condition | Approximately 12% higher in the vegetated pool section. |
| Mean velocity profile | Bend/pool region (vegetated) | Departure from the classical logarithmic profile relative to the bare case. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rahimpour, A.; Afzalimehr, H.; Okhravi, S.; Nazari-Sharabian, M.; Karakouzian, M. Turbulence in a Bend in the Presence of Emergent Vegetation and a 3D Pool Bedform. Water 2026, 18, 431. https://doi.org/10.3390/w18030431
Rahimpour A, Afzalimehr H, Okhravi S, Nazari-Sharabian M, Karakouzian M. Turbulence in a Bend in the Presence of Emergent Vegetation and a 3D Pool Bedform. Water. 2026; 18(3):431. https://doi.org/10.3390/w18030431
Chicago/Turabian StyleRahimpour, Alirahm, Hossein Afzalimehr, Saeid Okhravi, Mohammad Nazari-Sharabian, and Moses Karakouzian. 2026. "Turbulence in a Bend in the Presence of Emergent Vegetation and a 3D Pool Bedform" Water 18, no. 3: 431. https://doi.org/10.3390/w18030431
APA StyleRahimpour, A., Afzalimehr, H., Okhravi, S., Nazari-Sharabian, M., & Karakouzian, M. (2026). Turbulence in a Bend in the Presence of Emergent Vegetation and a 3D Pool Bedform. Water, 18(3), 431. https://doi.org/10.3390/w18030431

