Simulating Water Application Efficiency in Pressurized Irrigation Systems: A Computational Approach
Abstract
:1. Introduction
- Development of guidelines and manuals for the “Rational Use of Water” for users.
- Improving irrigation water use in a technical context.
- Encourage the use of potentially more efficient irrigation technologies (e.g., drip and sprinkler systems).
- Promote research and the application of the results in irrigation modernization.
- Greater capacity building in the sizing, management, and operational phases of irrigation projects.
- Development of national certification standards for irrigation equipment.
- Need for indicators to evaluate water use.
- Research application efficiency at the farmer’s plot level.
- Selection of technologies best adapted to local (site-specific) conditions.
2. Framework for the Assessment of Water Application Efficiency
3. Methodological Procedure for the Simulation of the Water Application Efficiency
- Solid set
- Center pivot
- Drip
- A corresponds to a reduced PSR.
- B1 corresponds to an average PSR.
- B2 corresponds to a high PSR.
- C corresponds to a very high PSR.
- Crust sealing corresponds to a type of soil strongly affected by low infiltration. The PSR is extremely high.
- Step 1: Irrigation system design—flow, length and water diameter inputs to compute the application rate;
- Step 2: Irrigation management—water depth and soil texture inputs;
- First result: Potential runoff (maximum value);
- Step 3: Slope and vegetation cover to estimate surface storage and compute actual runoff;
- Step 4: Climate parameters to estimate water losses;
- Final result: Application efficiency.
4. Computational Tool Validation and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The Water-Energy-Food Nexus. A New Approach in Support of Food Security and Sustainable Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; p. 28. [Google Scholar]
- FAO. Agriculture 4.0—Agricultural Robotics and Automated Equipment for Sustainable Crop Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020; p. 25. [Google Scholar]
- OECD. New Perspectives on the Water-Energy-Food Nexus—Forum Background Note; OECD Headquarters: Paris, France, 2014. [Google Scholar]
- European Commission: Joint Research Centre; Biedler, M.; Carmona-Moreno, C.; Dondeynaz, C. Position Paper on Water, Energy, Food and Ecosystems (WEFE) Nexus and Sustainable Development Goals (SDGs); Biedler, M., Carmona-Moreno, C., Dondeynaz, C., Eds.; Publications Office, 2019. Available online: https://op.europa.eu/en/publication-detail/-/publication/265bda85-88db-11e9-9369-01aa75ed71a1/language-en (accessed on 11 April 2025).
- Fatima, N.; Li, Y.; Ahmad, M.; Jabeen, G.; Li, X. Factors Influencing Renewable Energy Generation Development: A Way to Environmental Sustainability. Environ. Sci. Pollut. Res. 2021, 28, 51714–51732. [Google Scholar] [CrossRef] [PubMed]
- Giordono, L.S.; Flora, J.; Zanocco, C.; Boudet, H. Food Practice Lifestyles: Identification and Implications for Energy Sustainability. Int. J. Environ. Res. Public Health 2022, 19, 5638. [Google Scholar] [CrossRef] [PubMed]
- Hoff, H. Understanding the Nexus. In Proceedings of the Background Paper for the Bonn2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Lazaro, L.L.B.; Bellezoni, R.A.; Puppim de Oliveira, J.A.; Jacobi, P.R.; Giatti, L.L. Ten Years of Research on the Water-Energy-Food Nexus: An Analysis of Topics Evolution. Front. Water 2022, 4, 859891. [Google Scholar] [CrossRef]
- Molajou, A.; Afshar, A.; Khosravi, M.; Soleimanian, E.; Vahabzadeh, M.; Variani, H.A. A New Paradigm of Water, Food, and Energy Nexus. Environ. Sci. Pollut. Res. 2023, 30, 107487–107497. [Google Scholar] [CrossRef]
- Salmoral, G.; Zegarra, E.; Vázquez-Rowe, I.; González, F.; del Castillo, L.; Saravia, G.R.; Graves, A.; Rey, D.; Knox, J.W. Water-Related Challenges in Nexus Governance for Sustainable Development: Insights from the City of Arequipa, Peru. Sci. Total Environ. 2020, 747, 141114. [Google Scholar] [CrossRef]
- EEA. Climate Change, Impacts and Vulnerability in Europe 2016—An Indicator-Based Report; European Environment Agency: Copenhagen, Denmark, 2017; p. 424. [Google Scholar]
- FAO. Handbook on Climate Information for Farming Communities—What Farmers Need and What Is Available; Food and Agriculture Organization of the United Nations: Rome, Italy, 2019; p. 184. [Google Scholar]
- UN. The United Nations World Water Development Report 2021: Valuing Water; UNESCO: Paris, France, 2021. [Google Scholar]
- La Jeunesse, I.; Cirelli, C.; Aubin, D.; Larrue, C.; Sellami, H.; Afifi, S.; Bellin, A.; Benabdallah, S.; Bird, D.N.; Deidda, R.; et al. Is Climate Change a Threat for Water Uses in the Mediterranean Region? Results from a Survey at Local Scale. Sci. Total Environ. 2016, 543, 981–996. [Google Scholar] [CrossRef]
- Funk, C.; Raghavan Sathyan, A.; Winker, P.; Breuer, L. Changing Climate—Changing Livelihood: Smallholder’s Perceptions and Adaption Strategies. J. Environ. Manag. 2020, 259, 109702. [Google Scholar] [CrossRef]
- Zarei, Z.; Karami, E.; Keshavarz, M. Co-Production of Knowledge and Adaptation to Water Scarcity in Developing Countries. J. Environ. Manag. 2020, 262, 110283. [Google Scholar] [CrossRef]
- EC. Communication from the Commission: The European Green Deal (COM/2019/640); EC: Brussels, Belgium, 2019. [Google Scholar]
- EC. Summary of CAP Strategic Plans for 2023–2027: Joint Effort and Collective Ambition; European Commission: Brussels, Belgium, 2023; p. 13. [Google Scholar]
- Van Oost, I. Common Agricultural Policy post-2020. DG AGRI European Commission Unit B2—Research & Innovation; COP: Brussels, Belgium, 2021. [Google Scholar]
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System (COM(2020) 381); European Commission: Brussels, Belgium, 2020.
- EEA. Circular Economy in Europe—Developing the Knowledge Base; EEA Report; European Environment Agency: Copenhagen, Denmark, 2016. [Google Scholar]
- EC. Key Policy Objectives of the CAP 2023-27—European Commission. Available online: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/cap-2023-27/key-policy-objectives-cap-2023-27_en (accessed on 30 May 2024).
- CIHEAM. Dialogues on Mediterranean Water Challenges: Rational Water Use, Water Price versus Value and Lessons Learned from the European Water Framework Directive; SERIES A: Mediterranean Seminars; Centre International de Hautes Etudes Agronomiques Méditerranéennes: Bari, Italy, 2011; p. 196. [Google Scholar]
- Keller, J.; Bliesner, R.D. Sprinkle and Trickle Irrigation; Reprint of the 1990 edition; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-1-4757-1427-2. [Google Scholar]
- Oliveira, I. Irrigation Techniques-Volumes I & II (In Portuguese), 2nd ed.; Isaurindo Oliveira: Lisboa, Portugal, 2011; ISBN 978-989-20-2692-3. [Google Scholar]
- Luz, P.B. Guia Para a Avaliação e Seleção de Sistemas de Rega. Programa de Investigação e Formação Pós-Graduada; INIAV: Oeiras, Portugal, 2013. [Google Scholar]
- OECD. Environmental Indicators for Agriculture: Vol. 1: Concepts and Framework Vol. 2: Issues and Design—“The York Workshop”; Organisation for Economic Co-operation and Development: Paris, Paris, 1999. [Google Scholar]
- Todorović, N.; Ivković, V.; Kordić, S.; Dimitrieski, V.; Luković, I. IrrigDSS—Decision Support System for Irrigation Scheduling; Faculty of Technical Sciences, University of Novi Sad: Novi Sad, Serbia, 2018. [Google Scholar]
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.N.; et al. A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, X. Precision Agriculture and Water Conservation Strategies for Sustainable Crop Production in Arid Regions. Plants 2024, 13, 3184. [Google Scholar] [CrossRef]
- Gurmessa, D.K.; Assefa, S.G. A Scoping Review of the Smart Irrigation Literature Using Scientometric Analysis. J. Eng. 2023, 2023, 2537005. [Google Scholar] [CrossRef]
- Luz, P.B. A Graphical Solution to Estimate Potential Runoff in Center-Pivot Irrigation. Trans. ASABE 2011, 54, 81–92. [Google Scholar] [CrossRef]
- Ouazaa, S.; Latorre, B.; Burguete, J.; Serreta, A.; Playan, E.; Salvador, R.; Paniagua, P.; Zapata, N. Effect of the Start-Stop Cycle of Center-Pivot Towers on Irrigation Performance: Experiments and Simulations. Agric. Water Manag. 2015, 147, 163–174. [Google Scholar] [CrossRef]
- Delirhasannia, R.; Sadraddini, A.A.; Nazemi, A.H.; Farsadizadeh, D.; Playan, E. Dynamic Model for Water Application Using Centre Pivot Irrigation. Biosyst. Eng. 2010, 105, 476–485. [Google Scholar] [CrossRef]
- Al-Agele, H.A.; Mahapatra, D.M.; Prestwich, C.; Higgins, C.W. Dynamic Adjustment of Center Pivot Nozzle Height: An Evaluation of Center Pivot Water Application Pattern and the Coefficient of Uniformity. Appl. Eng. Agric. 2020, 36, 647–656. [Google Scholar] [CrossRef]
- Luz, P.B.; Heermann, D. A Statistical Approach to Estimating Runoff in Center Pivor Irrigation with Crust Conditions. Agric. Water Manag. 2005, 72, 33–46. [Google Scholar] [CrossRef]
- Sadeghi, S.H.; Peters, R.T. An Explicit Equation for the Maximum Water Application Depth in Center Pivot Irrigation. J. Irrig. Drain. Eng. 2022, 148, 06022007. [Google Scholar] [CrossRef]
- Zapata, N.; Bahddou, S.; Latorre, B.; Playan, E. A Simulation Tool to Optimize the Management of Modernized Infrastructures in Collective and On-Farm Irrigation Systems. Agric. Water Manag. 2023, 284, 108337. [Google Scholar] [CrossRef]
- Barta, R.; Broner, I.; Schneekloth, J.; Waskom, R. Colorado High Plains Irrigation Practices Guide; Special Report No. 14; Colorado Water Resources Research Institute, Colorado State University: Fort Collins, CO, USA, 2004. [Google Scholar]
- Slattery, K. Determining Irrigation Efficiency and Consumptive Use; GUID 1210-Water Resources Program Guidance; Washington State Department of Ecology: Washington, DC, USA, 2005. [Google Scholar]
- Rogers, D.H.; Lamm, F.R.; Alam, M.; Trooien, T.P.; Clark, A.; Barnes, P.L. Efficiencies and Water Losses of Irrigation Systems; Irrigation Management Series; Kansas State University: Manhattan, KS, USA, 1997. [Google Scholar]
- NRCS. National Irrigation Guide. Part 652-Engineering-Handbooks; 210-vi-NEH SC Supplement; USDA National Resources Conservation Service: Columbia, SC, USA, 2016; Chapter 4. [Google Scholar]
- Martin, D.L.; Kranz, W.; Thompson, A.; Liang, H. Selecting Sprinkler Packages for Center Pivots. Trans. ASABE 2012, 55, 513–523. [Google Scholar] [CrossRef]
- Lamm, F.R.; Bordovsky, J.P.; Howell, T.A., Sr. A Review of In-Canopy and Near-Canopy Sprinkler Irrigation Concepts. Trans. ASABE 2019, 62, 1355–1364. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Miller, D.E.; Brooks, R.H. Chapter 4: Soil Water Part I—Properties. In Design and Operation of Farm Irrigation Systems; Jensen, M.E., Ed.; American Society of Agricultural Engineers: Michigan, MI, USA, 1983; ISBN 0-916150-28-3. [Google Scholar]
- NWA. Inver Grove Heights Stormwater Manual—Appendix E—Curve Number Derivation; Northwest Area: Inver Grove Heights, MN, USA, 2006. [Google Scholar]
- Kincaid, D. The WEPP Model for Runoff and Erosion Prediction under Sprinkler Irrigation. Trans. ASAE 2002, 45, 67. [Google Scholar] [CrossRef]
- Kincaid, D.C. Application Rates from Center Pivot Irrigation with Current Sprinkler Types. Appl. Eng. Agric. 2005, 21, 605–610. [Google Scholar] [CrossRef]
- Gilley, J.R. Suitability of Reduced Pressure Center-Pivots. J. Irrig. Drain. Eng. 1984, 110, 22–34. [Google Scholar] [CrossRef]
- NRCS. National Irrigation Guide; Part 652. 210-VI-NEH-IG. Nebraska Amendment NE4; NRCS: Washington, DC, USA, 2005. [Google Scholar]
- Klocke, N.; Kranz, W.; Yonts, C.D.; Wertz, K. Water Runoff from Sprinkler Irrigation: A Case Study; University of Nebraska: Lincoln, RI, USA, 1996. [Google Scholar]
- Rogers, D.H.; Spurgeon, W.; Sothers, W. Sprinklers Package Effects on Runoff; Irrigation Management Series; Kansas State University: Manhattan, KS, USA, 1994. [Google Scholar]
- Montgomery, R. Wind Effects on Sprinkler Irrigation Performance; Rain Bird Corporation Technical Paper Library, Irrigation Association: Fairfax, VA, USA, 2013. Available online: https://www.irrigation.org/IA/FileUploads/IA/Resources/TechnicalPapers/2013/WindEffectsOnSprinklerIrrigationPerformance.pdf (accessed on 17 March 2025).
- Martínez-Cob, A.; Playán, E.; Zapata, N.; Cavero, J.; Medina, E.T.; Puig, M. Contribution of Evapotranspiration Reduction during Sprinkler Irrigation to Application Efficiency. J. Irrig. Drain. Eng. 2008, 134, 745–756. [Google Scholar] [CrossRef]
- Playan, E.; Garrido, S.; Faci, J.M.; Galán, A. Characterizing Pivot Sprinklers Using an Experimental Irrigation Machine. Agric. Water Manag. 2004, 70, 177–193. [Google Scholar] [CrossRef]
- Playan, E.; Salvador, R.; Faci, J.M.; Zapata, N.; Martinez-Cob, A.; Sanchez, I. Day and night wind drift and evaporation losses in sprinkler solid-sets and moving laterals. Agric. Water Manag. 2005, 76, 139–159. [Google Scholar] [CrossRef]
- King, B.A.; Bjorneberg, D.L. Evaluation of potential runoff and erosion of four center pivot irrigation sprinklers. Appl. Eng. Agric. 2011, 27, 75–85. [Google Scholar] [CrossRef]
- Solomon, K. Irrigation Systems and Water Application Efficiencies; California State University: Fresno, CA, USA, 1988. [Google Scholar]
- Pereira, L.S. Diagnóstico dos Sistemas de Rega em Pressão. Report—Pediza Project nº 1999.64.006326.1; Departamento de Engenharia Rural, Instituto Superior de Agronomia: Lisboa, Portugal, 2002; 231p. [Google Scholar]
PSR Classes | Reference Values |
---|---|
A | 10 (<15) |
B1 | 23 (15–30) |
B2 | 36 (30–45) |
C | 50 (>45) |
Crust | 60 |
Vegetable Cover | Land Slope | ||
---|---|---|---|
Low (<2%) | Medium (2% to 5%) | High (>5%) | |
Low (<30%) | 10 | 5 | 0 |
Medium (30 to 60%) | 13 | 8 | 3 |
High (>60%) | 16 | 11 | 6 |
Variable | Low | Medium | High | |
---|---|---|---|---|
Gross Irrigation depth (mm) | <15 | 15–25 | >25 | |
Application rate (mm/h) | Solid Set Sprinklers | <5 | 5–15 | >15 |
Pivot Sprinklers | <65 | 65–100 | >100 | |
Drip | <5 | 5–15 | >15 | |
Soil texture—Ks (mm/h) | <5 (Heavy) | 5–20 (Medium) | >20 (Light) | |
Vegetation cover (%) | <30 | 30–60 | >60 | |
Land slope (%) | <2 | 2–5 | >5 | |
Wind speed (m/s) | <2 | 2–4 | >4 | |
Air temperature (°C) | <20 | 20–30 | >30 | |
Water application efficiency (%) | <70 | 70–80 | >80 |
Variables | Information Sources Listed | |
---|---|---|
Irrigation Depth and Frequency | National Irrigation Guide—Part 652, Chapter 4 [42] Sprinkle and Trickle Irrigation—Chapters 3, 14, 19 [24] | |
Application Rates | Solid Set, Center-Pivot, Drip | CPNOZZLE [39] Sprinkle and Trickle Irrigation—Chapter 5, 14, 20 [24] |
Infiltration, Soil Texture, Ks | Kozak and Ahuja—Soil properties—Table 1 [43] Luz and Heermann—Infiltration simulation [36] | |
Potential Runoff | CPNOZZLE [39,52]; Gilley—Design Guidelines [49]; Luz—Approaches to Runoff Occurrence [32] | |
Surface Storage | Gilley—Design Guidelines [49] NRCS Nebraska Amendment [43,50] | |
Climate Conditions | WDEL Experimental (Sprinklers) [55,56] National Irrigation Guide—Part 652, Chapter 4 [42] Sprinkle and Trickle Irrigation—Chapters 4, 6 [24] | |
Water Loss and Water Application Efficiency | Irrigation Practices Guide [39] Rain Bird—Efficiency Multi-Variant Approach [53] Sprinkle and Trickle Irrigation—Chapters 4, 6 [24] Water Resources Program Guidance [40] |
Variables | Case Studies | |||||
---|---|---|---|---|---|---|
C.PIVOT 1 | C.PIVOT 2 | SOLID SET 1 | SOLID SET 2 | DRIP 1 | DRIP 2 | |
Soil texture | Loam (Medium) | Clay (High) | Loam (Medium) | Loam (Medium) | Loam (Medium) | Loam (Medium) |
Peak/Application Rate (mm/h) | 60 (Low) | 120 (High) | 7 (Medium) | 3 (Low) | 7 (Medium) | 4 (Low) |
Gross irrigation depth (mm) | 7.5 (Low) | 15.2 (Medium) | 7.2 (Low) | 6 (Low) | 8.2 (Low) | 25.7 (High) |
Slope Class (%) | 2–5% (Medium) | 2–5% (Medium) | 2–5% (Medium) | 2–5% (Medium) | 2–5% (Medium) | 2–5% (Medium) |
Vegetation Cover (%) | Sunflower (Medium) | Corn (Medium) | Corn (Medium) | Corn (Low) | Corn (Medium) | Melon (Low) |
Surface storage (mm) | 8 | 8 | 8 | 5 | 8 | 5 |
Wind speed (m/s) | 1 | >3 | 0.9 | 2 | – | – |
Month of the year and temperature | July (High) | June (Medium) | July (High) | June (Medium) | July (High) | July (High) |
Evaporation and wind drift (mm) | 1 | 3 | 1.1 | 0.7 | 0.8 (evaporation) | 2.6 (evaporation) |
Variables | Case Studies | |||||
---|---|---|---|---|---|---|
C.PIVOT 1 | C.PIVOT 2 | SOLID SET 1 | SOLID SET 2 | DRIP 1 | DRIP 2 | |
PSR classification | A | C | A | A | A | A |
Surface runoff (mm) | 0 | 1.3 | 0 | 0 | 0 | 0 |
WAE (computational tool) (%) | 85 (High) | 78 (Medium) | 85 (High) | 85 (High) | 90 (High) | 90 (High) |
WAE (in the field) (%) | 87 (High) | 78 (Medium) | 83 (High) | 88 (High) | - (High) | - (High) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carriço, N.; Felícissimo, D.; Antunes, A.; Luz, P.B.d. Simulating Water Application Efficiency in Pressurized Irrigation Systems: A Computational Approach. Water 2025, 17, 1217. https://doi.org/10.3390/w17081217
Carriço N, Felícissimo D, Antunes A, Luz PBd. Simulating Water Application Efficiency in Pressurized Irrigation Systems: A Computational Approach. Water. 2025; 17(8):1217. https://doi.org/10.3390/w17081217
Chicago/Turabian StyleCarriço, Nelson, Diogo Felícissimo, André Antunes, and Paulo Brito da Luz. 2025. "Simulating Water Application Efficiency in Pressurized Irrigation Systems: A Computational Approach" Water 17, no. 8: 1217. https://doi.org/10.3390/w17081217
APA StyleCarriço, N., Felícissimo, D., Antunes, A., & Luz, P. B. d. (2025). Simulating Water Application Efficiency in Pressurized Irrigation Systems: A Computational Approach. Water, 17(8), 1217. https://doi.org/10.3390/w17081217