Response of VFAs Produced by Kitchen Waste Fermentation to Intermittent pH Regulation and Enhanced Denitrification Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sources of Kitchen Waste
2.2. Characteristics of Inoculated Sludge and Sewage
2.3. A2O Device and Technological Parameters
2.4. Experimental Operation
2.5. Methods of Chemical and Microbiological Analysis
3. Results and Discussion
3.1. Effect of pH on Acidification and Hydrolysis During Kitchen Waste AF Progress
3.1.1. SCOD
3.1.2. VFAs
3.1.3. VFAs/SCOD Ratio
3.1.4. The Variation in pH
3.2. Effect of pH on the TN During Kitchen Waste AF Progress
3.2.1. TN
3.2.2. C/N Ratio
3.3. Enhanced Effect of VFAs Produced from Kitchen Waste AF on N Removal by A2O Process
3.4. Microbial Community Changes
3.4.1. Microbial Diversity Analysis
3.4.2. Microbial Composition
3.5. Effects of Carbon Sources on Functional Metabolism
3.5.1. Functional Prediction Analysis
3.5.2. Functional Gene Analysis
3.6. Key Enzyme Analysis
3.6.1. N Cycle
3.6.2. TCA Cycle
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Meng, Q.; Liu, H.; Zhang, H.; Xu, S.; Lichtfouse, E.; Yun, Y. Anaerobic digestion and recycling of kitchen waste: A review. Environ. Chem. Lett. 2022, 20, 1745–1762. [Google Scholar] [CrossRef]
- Feng, L.; Yuan, F.; Liu, F.; Wang, T.; Chen, Y. Research progress on lactic acid production from food waste by fermentation. J. Tongji. Uni. (Nat. Sci.) 2021, 49, 1688–1700. [Google Scholar]
- Luo, J.; Huang, W.; Zhang, Q.; Guo, W.; Wu, Y.; Feng, Q.; Fang, F.; Cao, J.; Su, Y. Effects of different hypochlorite types on the waste activated sludge fermentation from the perspectives of volatile fatty acids production, microbial community and activity, and characteristics of fermented sludge. Bioresour. Technol. 2020, 307, 123227. [Google Scholar] [CrossRef] [PubMed]
- Mineo, A.; Di Leto, Y.; Cosenza, A.; Capri, F.C.; Gallo, G.; Alduina, R.; Ni, B.J.; Mannina, G. Enhancing volatile fatty acid production from sewage sludge in batch fermentation tests. Chemosphere 2024, 349, 140859. [Google Scholar] [CrossRef]
- Singh, R.; Palar, S.; Kowalczewski, A.; Swope, C.; Parameswaran, P.; Sun, N. Adsorptive recovery of volatile fatty acids from wastewater fermentation broth. J. Environ. Chem. Eng. 2023, 11, 110507. [Google Scholar] [CrossRef]
- Li, X.; Yu, Z.; Ge, X.; Zhang, W.; Fang, Y.; Liu, W.; Wang, A. Volatile fatty acids bio-production using extracellular polymeric substances disengaged from sludge for carbon source recycling. Bioresour. Technol. 2023, 386, 129565. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yuan, Y.; Li, X.; Kang, X.; Du, M. Succession of bacterial community in anaerobic–anoxic–aerobic (A2O) bioreactor using sludge fermentation liquid as carbon source. Desalination Water Treat. 2015, 54, 1061–1069. [Google Scholar] [CrossRef]
- Wu, C.Y.; Peng, Y.Z.; Wan, C.L.; Wang, S.Y. Performance and microbial population variation in a plug-flow A2O process treating domestic wastewater with low C/N ratio. J. Chem. Technol. Biotechnol. 2011, 86, 461–467. [Google Scholar] [CrossRef]
- Lu, H.; Gu, L.; Guo, Z.; Fan, P.; Liu, M.; Cui, L.; Yu, L.; Peng, Z. The effect of carbon source produced by modified corncob fermentation on denitrification. J. Water Process Eng. 2024, 60, 105235. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2000. [Google Scholar]
- Lin, L.; Li, X.Y. Effects of pH adjustment on the hydrolysis of Al-enhanced primary sedimentation sludge for volatile fatty acid production. Chem. Eng. J. 2018, 346, 50–56. [Google Scholar] [CrossRef]
- Li, Y.F.; Ren, N.Q.; Chen, Y.; Zheng, G.X. Ecological mechanism of fermentative hydrogen production by bacteria. Int. J. Hydrogen Energy 2007, 32, 755–760. [Google Scholar] [CrossRef]
- Shi, C.; Ma, J.; Wu, H.; Luo, J.; Liu, Y.; Li, K.; Zhou, Y.; Wang, K. Evaluation of pH regulation in carbohydrate-type municipal waste anaerobic co-fermentation: Roles of pH at acidic, neutral and alkaline conditions. Sci. Total Environ. 2022, 853, 158327. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.; Zhang, X.; Xia, W.; Li, Z.; Wang, L.; Chen, Z.; Ge, S. Effect of extreme pH conditions on methanogenesis: Methanogen metabolism and community structure. Sci. Total Environ. 2023, 877, 162702. [Google Scholar] [CrossRef] [PubMed]
- Guan, N.; Liu, L. Microbial response to acid stress: Mechanisms and applications. Appl. Microbiol. Biotechnol. 2020, 104, 51–65. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, F.; Sun, S.; Huang, W.; Zhao, Z.; Yang, F.; Lei, Z.; Huang, W.; Yi, X. Coupling iron sludge addition and intermittent aeration for achieving simultaneous methanogenesis, feammox, and denitrification in a single reactor treating fish sludge. Environ. Sci. Technol. 2023, 57, 15065–15075. [Google Scholar] [CrossRef]
- Huang, X.; Dong, W.; Wang, H.; Feng, Y.; Sun, F.; Zhou, T. Sludge alkaline fermentation enhanced anaerobic-multistage anaerobic/oxic (A-MAO) process to treat low C/N municipal wastewater: Nutrients removal and microbial metabolic characteristics. Bioresour. Technol. 2020, 302, 122583. [Google Scholar] [CrossRef]
- Æsøy, A.; Ødegaard, H.; Bentzen, G. The effect of sulphide and organic matter on the nitrification activity in a biofilm process. Water Sci. Technol. 1998, 37, 115–122. [Google Scholar] [CrossRef]
- Cao, W.; Fang, S.; Wu, Q.; Wu, Y.; Feng, L.; Xie, Z.; Feng, Q.; Fang, F.; Xu, Z.; Luo, J.; et al. Choline chloride pretreatment on volatile fatty acids promotion from sludge anaerobic fermentation: In-situ deep eutectic solvents-like formation for EPS disintegration and associated microbial functional profiles upregulation. Chem. Eng. J. 2023, 467, 143556. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Zhang, Z.; Wang, Q.; Shen, F.; Li, R.; Li, D.S.; Ren, X.; Wang, M.; Chen, H.; Zhao, J. New insight with the effects of biochar amendment on bacterial diversity as indicators of biomarkers support the thermophilic phase during sewage sludge composting. Bioresour. Technol. 2017, 238, 589–601. [Google Scholar] [CrossRef]
- Pang, H.; Jiao, Q.; An, L.; Yang, T.; He, J.; Xie, B.; Yan, Z.; Lu, J. New insight into selective Na+ stress on acidogenic fermentation of waste activated sludge from microbial perspective: Hydrolase secretion, fermentative bacteria screening, and metabolism modification. Chem. Eng. J. 2022, 442, 136098. [Google Scholar] [CrossRef]
- Han, F.; Zhang, M.; Shang, H.; Liu, Z.; Zhou, W. Microbial community succession, species interactions and metabolic pathways of sulfur-based autotrophic denitrification system in organic-limited nitrate wastewater. Bioresour. Technol. 2020, 315, 123826. [Google Scholar] [CrossRef]
- Li, X.R.; Du, B.; Fu, H.X.; Wang, R.F.; Shi, J.H.; Wang, Y.; Jetten, M.S.; Quan, Z.X. The bacterial diversity in an anaerobic ammonium-oxidizing (anammox) reactor community. Syst. Appl. Microbiol. 2009, 32, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Hong, P.; Pang, Y.; Xu, J.; Wang, Q.; Lin, H.; Ruan, Y.; Shu, Y.; Zhang, K.; Leung, K.M. Transformation fate of bisphenol A in aerobic denitrifying cultures and its coercive mechanism on the nitrogen transformation pathway. Environ. Res. 2025, 268, 120816. [Google Scholar] [CrossRef]
- Ajibade, F.O.; Yin, W.X.; Guadie, A.; Ajibade, T.F.; Liu, Y.; Kumwimba, M.N.; Liu, W.Z.; Han, J.L.; Wang, H.C.; Wang, A.J. Impact of biochar amendment on antibiotic removal and ARGs accumulation in constructed wetlands for low C/N wastewater treatment. Chem. Eng. J. 2023, 459, 141541. [Google Scholar] [CrossRef]
- Luo, J.; Liang, H.; Yan, L.; Ma, J.; Yang, Y.; Li, G. Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality. Bioresour. Technol. 2013, 148, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Yun, H.; Liang, B.; Kong, D.; Wang, A. Improving biocathode community multifunctionality by polarity inversion for simultaneous bioelectroreduction processes in domestic wastewater. Chemosphere 2018, 194, 553–561. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, Y.; Tang, J.; Pu, Z.; Chen, Y.; Huang, L. Biological mechanisms affecting the release of greenhouse gases from microbial fuel cell-constructed wetland by simultaneously altering structure and electron shuttles. J. Clean. Prod. 2024, 466, 142919. [Google Scholar] [CrossRef]
- Luo, Y.; Yi, K.; Zhang, X.; Li, B.; Cao, R.; Pang, Y.; Li, M.; Hou, C.; Lv, J.; Li, X.; et al. Simultaneous partial nitrification, denitrification, and phosphorus removal in sequencing batch reactors via controlled reduced aeration and short-term sludge retention time decrease. J. Environ. Manag. 2023, 344, 118598. [Google Scholar] [CrossRef]
- He, Q.; Zhang, Q.; Su, J.; Li, M.; Lin, B.; Wu, N.; Shen, H.; Chen, J. Unraveling the mechanisms and responses of aniline-degrading biosystem to salinity stress in high temperature condition: Pollutants removal performance and microbial community. Chemosphere 2024, 362, 142688. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, L.; Su, J.; Zhao, B.; Liu, Y.; Li, X. Ferrous-driven efficient removal of nitrate and various heavy metals by Zoogloea sp. ZP7 under oligotrophic conditions: Kinetics and heavy metal stress responses. J. Water Process Eng. 2024, 67, 106148. [Google Scholar] [CrossRef]
- Zhou, G.; Huang, X.; Zhang, S.; Xiang, Z.; Wei, J.; Ma, S.; Teng, X.; Zheng, Z. Volatile fatty acids (VFAs) production from sludge and chicken manure anaerobic co-fermentation: Effects of mixing ratio and microbial mechanisms. J. Environ. Chem. Eng. 2024, 12, 114014. [Google Scholar] [CrossRef]
- Kim, D.D.; Park, D.; Yoon, H.; Yun, T.; Song, M.J.; Yoon, S. Quantification of nosZ genes and transcripts in activated sludge microbiomes with novel group-specific qPCR methods validated with metagenomic analyses. Water Res. 2020, 185, 116261. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Chen, Y.; Xiao, L. Metagenomic insights into mixotrophic denitrification facilitated nitrogen removal in a full-scale A2/O wastewater treatment plant. PLoS ONE 2021, 16, e0250283. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Li, C.; Li, N.; Zou, P.; Gao, X.; Cao, Q. Nitrogen removal performances and metabolic mechanisms of denitrification systems using different volatile fatty acids as external carbon sources. Chem. Eng. J. 2023, 474, 145998. [Google Scholar] [CrossRef]
- Wei, J.; Huang, X.; Wang, H.; Wang, F.; Liu, X.; Yan, Y.; Qu, Y. Insight into biofilm formation of wastewater treatment processes: Nitrogen removal performance and biological mechanisms. Sci. Total Environ. 2023, 903, 166550. [Google Scholar] [CrossRef]
- Liu, S.; Wang, C.; Hou, J.; Wang, P.; Miao, L. Effects of Ag NPs on denitrification in suspended sediments via inhibiting microbial electron behaviors. Water Res. 2020, 171, 115436. [Google Scholar] [CrossRef]
- Shimizu, K. Bacterial Cellular Metabolic Systems: Metabolic Regulation of a Cell System with 13C-Metabolic Flux Analysis; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Li, T.; Li, W.; Chai, X.; Dai, X.; Wu, B. PHA stimulated denitrification through regulation of preferential cofactor provision and intracellular carbon metabolism at different dissolved oxygen levels by Pseudomonas stutzeri. Chemosphere 2022, 309, 136641. [Google Scholar] [CrossRef]
- Petushkova, E.; Khasimov, M.; Mayorova, E.; Delegan, Y.; Frantsuzova, E.; Bogun, A.; Galkina, E.; Tsygankov, A. The Complete Genome of a Novel Typical Species Thiocapsa bogorovii and Analysis of Its Central Metabolic Pathways. Microorganisms 2024, 12, 391. [Google Scholar] [CrossRef]
Detection Index | Unit | Value |
---|---|---|
pH | — | 6.67 |
Oxidation-reduction potential (ORP) | mV | 119.7 |
SCOD | g/L | 11,935 |
TN | mg/L | 121 |
Ammonia nitrogen (NH4+-N) | mg/L | 85 |
Soluble phosphorus (PO43−-P) | mg/L | 91 |
Total suspended solids (TSS) | g/L | 54 |
Volatile suspended solids (VSS) | g/L | 48 |
Water content | % | 78 |
Pollutant Index | Low C/N Influent Water | Methanol | Kitchen Waste Fermentation Liquid |
---|---|---|---|
COD/TN ratio | 4.06 | 8.81 | 7.83 |
Influent COD (mg/L) | 185 ± 8 | 386 ± 15 | 378 ± 26 |
Effluent COD (mg/L) | 22 ± 7 | 26 ± 5 | 31 ± 11 |
COD removal efficiency (%) | 88.11 | 93.26 | 91.80 |
Influent NH4+-N (mg/L) | 41.18 ± 1.65 | 39.22 ± 1.82 | 45.39 ± 2.33 |
Effluent NH4+-N (mg/L) | 1.38 ± 0.36 | 1.66 ± 0.42 | 2.87 ± 0.62 |
NH4+-N removal efficiency (%) | 96.65 | 95.77 | 93.68 |
Influent TN (mg/L) | 45.60 ± 1.65 | 43.81 ± 1.65 | 48.25 ± 2.94 |
Effluent TN (mg/L) | 19.35 ± 1.22 | 12.16 ± 0.87 | 13.64 ± 1.08 |
TN removal efficiency (%) | 57.57 | 72.24 | 71.73 |
Sample | Ace | Chao | Coverage | Shannon | Simpson | Sobs |
---|---|---|---|---|---|---|
Control | 1852.761 | 1796.462 | 0.995 | 4.995 | 0.048 | 1693 |
Fermentation | 1742.566 | 1697.32 | 0.996 | 5.109 | 0.040 | 1603 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Wei, W.; Huang, X.; Liu, C. Response of VFAs Produced by Kitchen Waste Fermentation to Intermittent pH Regulation and Enhanced Denitrification Efficiency. Water 2025, 17, 1157. https://doi.org/10.3390/w17081157
Xu S, Wei W, Huang X, Liu C. Response of VFAs Produced by Kitchen Waste Fermentation to Intermittent pH Regulation and Enhanced Denitrification Efficiency. Water. 2025; 17(8):1157. https://doi.org/10.3390/w17081157
Chicago/Turabian StyleXu, Shijie, Wen Wei, Xiao Huang, and Chao Liu. 2025. "Response of VFAs Produced by Kitchen Waste Fermentation to Intermittent pH Regulation and Enhanced Denitrification Efficiency" Water 17, no. 8: 1157. https://doi.org/10.3390/w17081157
APA StyleXu, S., Wei, W., Huang, X., & Liu, C. (2025). Response of VFAs Produced by Kitchen Waste Fermentation to Intermittent pH Regulation and Enhanced Denitrification Efficiency. Water, 17(8), 1157. https://doi.org/10.3390/w17081157