Process Modeling and Its Application in Municipal Wastewater Treatment Plant Based on Seasonal Temperature Variations: A Case Study in Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of the Typical Municipal WWTP
2.2. Data Description of Different Seasons
2.3. Sensitive Analysis
2.4. Simulation Results Analysis
3. Results and Discussion
3.1. Parameters Sensitivity
3.2. Parameter Calibration and Simulation Results
3.3. Scenario Settings and Simulation Results for Different Seasonal Problems
3.3.1. The Impact of Influent Flow Rate on Effluent Quality
3.3.2. Flocculation Dosing Strategies Under Summer Heavy Rainfall Conditions
3.3.3. The Effect of Varying C/N Ratios on Effluent Quality
3.3.4. Operational Optimization Under Low Temperatures in Winter
- (1)
- Internal reflux ratio
- (2)
- External reflux ratio
- (3)
- DO concentrations in the aerobic tank
3.4. Optimization Schemes and Practical Application
3.4.1. Optimization Schemes
- (1)
- Control the influent flow rate within 125% of the design capacity, i.e., 5 × 104 m3/d, to maintain the stability of operation.
- (2)
- In summer, operators should closely monitor the changes in influent flow. In the event of heavy rainfall, promptly increase the PAC dosage. When the influent flow approaches the historical maximum of 4.7 × 104 m3/d, the PAC dosage should not be less than 1500 kg/d to ensure the effluent TP meets the standard.
- (3)
- Closely monitor the influent C/N ratio. When online monitoring indicates a decrease in the influent C/N ratio, the carbon source dosage should be increased to reduce the risk of TN and TP exceedance. Conversely, when the influent C/N ratio increases, the carbon source dosage should be promptly reduced to mitigate the risk of COD exceedance. For detailed schemes, refer to Section 3.3.3.
- (4)
- In winter, when low temperatures hinder TN removal, the effluent TN removal efficiency can be enhanced by appropriately increasing the internal reflux ratio (around 150%) and external reflux ratio (around 100%), and reducing the DO level (1.5~2 mg/L) in the oxic tank. Considering energy consumption, priority should be given to reducing the DO level.
3.4.2. Practical Application
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poblete, I.; Araujo, O.; de Medeiros, J.L. Sewage-Water Treatment and Sewage-Sludge Management with Power Production as Bioenergy with Carbon Capture System: A Review. Processes 2022, 10, 788. [Google Scholar] [CrossRef]
- Xu, A.; Wu, Y.H.; Chen, Z.; Wu, G.X.; Wu, Q.Y.; Ling, F.Q.; Huang, W.E.; Hu, H.Y. Towards the new era of wastewater treatment of China: Development history, current status, and future directions. Water Cycle 2020, 1, 80–87. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; Matsuo, T.; Wentzel, M.C.; Marais, G.; Van Loosdrecht, M. Activated Sludge Model No.2d, ASM2d. Water Sci. Technol. 1999, 39, 165–182. [Google Scholar] [CrossRef]
- Carrette, R.; Bixio, D.; Thoeye, C.; Ockler, P. Full-scale application of the IAWQ ASM No. 2d model. Water Sci. Technol. 2001, 44, 17–24. [Google Scholar] [CrossRef]
- Elawwad, A.; Zaghloul, M.; Abdel-Halim, H. Simulation of municipal-industrial full scale WWTP in an arid climate by application of ASM3. J. Water Reuse Desalin. 2017, 7, 37–44. [Google Scholar] [CrossRef]
- Srivastava, S.; Brar, S.K.; Rao, S.; Kumar, P. Assessing operational issues in a modular sewage treatment plant and providing remedies via comprehensive modeling and simulation through GPS-X. J. Water Process. Eng. 2024, 57, 104678. [Google Scholar] [CrossRef]
- He, S.J.; Zhou, J.F.; Zhou, L.; Yang, N.; Gao, J.S.; Zhu, J.; Chen, J.W.; Chen, J.J. Assessment and modeling of effluent quality, economic benefits, and greenhouse gas reduction for receiving brewery wastewater on A2O by GPS- X. Sci. Total Environ. 2023, 883, 163671. [Google Scholar] [CrossRef]
- Ilie, M.; Robescu, D.N.; Ghita, G. Modelling and Simulation of Organic Matter Biodegradation Processes in Aeration Tanks with Activated Sludge. Rev. De Chim. 2009, 60, 529–532. [Google Scholar]
- Sheik, A.G.; Seepana, M.M.; Ambati, S.R. A Model-Based Approach to Study the Effect of Temperature in Plant-Wide Biological Wastewater Treatment Plants. J. Water. Chem. Technol. 2022, 44, 182–190. [Google Scholar] [CrossRef]
- Shao, Y.T.; Wang, Y.; Wang, H.C.; Liu, G.H.; Qi, L.; Xu, X.L.; Zhang, J.B.; Liu, S.; Sun, W.Z. Effect of operating temperature on the efficiency of ultra-short-sludge retention time activated sludge systems. Environ. Sci. Pollut. Res. 2021, 28, 39257–39267. [Google Scholar] [CrossRef]
- Alisawi, H. Performance of wastewater treatment during variable temperature. Appl. Water Sci. 2020, 10, 89. [Google Scholar] [CrossRef]
- Zhang, B.; Yu, Q.W.; Yan, G.Q.; Zhu, H.B.; Xu, X.Y.; Zhu, L. Seasonal bacterial community succession in four typical wastewater treatment plants: Correlations between core microbes and process performance. Sci. Rep. 2018, 8, 4566. [Google Scholar] [CrossRef]
- Wang, Q.; Gong, C.; Wei, B.; Liu, W.; Zhang, P.; Duan, Y.; Song, J.; Wang, L. Analysis of wastewater treatment plant performance and sludge characteristics under seasonal climate change. Water Wastewater Eng. 2021, 47, 49–54. [Google Scholar]
- Cao, J.; Yang, E.; Xu, C.; Zhang, T.; Xu, R.; Fu, B.; Feng, Q.; Fang, F.; Luo, J. Model-based strategy for nitrogen removal enhancement in full-scale wastewater treatment plants by GPS-X integrated with response surface methodology. Sci. Total Environ. 2021, 769, 144851. [Google Scholar] [CrossRef] [PubMed]
- Mu’Azu, N.D.; Alagha, O.; Anil, I. Systematic Modeling of Municipal Wastewater Activated Sludge Process and Treatment Plant Capacity Analysis Using GPS-X. Sustainability 2020, 12, 8182. [Google Scholar] [CrossRef]
- Jiang, B.C.; Ma, F.; Wei, L.; Guo, J.B.; Li, A. Operational Conditions and Improvement Methods of Municipal Wastewater Treatment Plants under Low Temperatures in Northern China. In Environment Materials and Environment Management Pts 1-3; Du, Z.Y., Sun, X.B., Eds.; International Conference of Environment Materials and Environment Management; Routledge: Oxfordshire, UK, 2010; Volume 113–116, p. 651. [Google Scholar]
- Lawrence, J.; Giurea, R.; Bettinetti, R. The Impact of Seasonal Variations in Rainfall and Temperature on the Performance of Wastewater Treatment Plant in the Context of Environmental Protection of Lake Como, a Tourist Region in Italy. Appl. Sci. 2024, 14, 11721. [Google Scholar] [CrossRef]
- Hu, C.; He, Q.; Xu, Z.; Zhu, J.; Li, H.; Lang, F. Operation and Control of Reversed A2/O Process Based on Seasonal Temperature Variation. China Water Wastewater 2012, 28, 126–129. [Google Scholar]
- Pilz, F.; Svardal, K.; Kreuzinger, N.; Krampe, J. Model-based dynamic simulation study to boost the WWTP performance in winter tourism regions. J. Water Process. Eng. 2024, 61, 105266. [Google Scholar] [CrossRef]
- DB 32/4440-2022; Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant. Standards Press of China: Beijing, China, 2022.
- EPA US. QUAL2E—The Enhanced Stream Water Quality Model EPA/823/B-95/003; Environmental Research Laboratory: Athens, GA, USA, 1987.
- Liwarska-Bizukojc, E.; Biernacki, R. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software. Bioresour. Technol. 2010, 101, 7278–7285. [Google Scholar] [CrossRef]
- Del Pozo, R.; Tas, D.O.; Dulkadiroglu, H.; Orhon, D.; Diez, V. Biodegradability of slaughterhouse wastewater with high blood content under anaerobic and aerobic conditions. J. Chem. Technol. Biotechnol. 2003, 78, 384–391. [Google Scholar] [CrossRef]
- Roeleveld, P.J.; van Loosdrecht, M. Experience with guidelines for wastewater characterisation in The Netherlands. Water Sci. Technol. 2002, 45, 77–87. [Google Scholar] [CrossRef]
- Henze, M.; Gujer, W.; Mino, T.; Van Loosedrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Publishing: London, UK, 2006; ISBN 1780402368. [Google Scholar]
- Dold, P.L.; Jones, R.M.; Bye, C.M. Importance and measurement of decay rate when assessing nitrification kinetics. Water Sci. Technol. 2005, 52, 469–477. [Google Scholar] [CrossRef]
- Aguilar, M.I.; Lloréns, M.; Fernández-Garrido, J.M.; Pérez-Marín, A.B.; Ortuño, J.F.; Meseguer, V.F. Heavy metals effect on the heterotrophic activity of activated sludge. Int. J. Environ. Sci. Technol. 2020, 17, 3111–3118. [Google Scholar] [CrossRef]
- Liau, K.F.; Shoji, T.; Ong, Y.H.; Chua, A.S.M.; Yeoh, H.K.; Ho, P.Y. Kinetic and stoichiometric characterization for efficient enhanced biological phosphorus removal (EBPR) process at high temperatures. Bioprocess. Biosyst. Eng. 2015, 38, 729–737. [Google Scholar] [CrossRef]
- Bornemann, C.; Londong, J.; Freund, M.; Nowak, O.; Otterpohl, R.; Rolfs, T. Hinweise zur dynamischen Simulation von Belebungsanlagen mit dem Belebtschlammodell Nr. 1 der IAWQ. KA. Korrespondenz Abwasser 1998, 45, 455–462. [Google Scholar]
- Spanjers, H.; Vanrolleghem, P.; Nguyen, K.; Vanhooren, H.; Patry, G.G. Towards a simulation-benchmark for evaluating respirometry-based control strategies. Water Sci. Technol. 1998, 37, 219–226. [Google Scholar] [CrossRef]
- Lopez-Vazquez, C.M.; Mithaiwala, M.; Moussa, M.S.; van Loosdrecht, M.C.M.; Brdjanovic, D. Coupling ASM3 and ADM1 for wastewater treatment process optimisation and biogas production in a developing country: Case-study Surat, India. J. Water Sanit. Hyg. Dev. 2013, 3, 12–25. [Google Scholar] [CrossRef]
- Eidroos, A. Optimization of Wastewater Treatment Plant Using Plant-Wide modeling Tool: Reysut WWTP Salalah-Oman [Case Sstudy]. Master’s Thesis, UNESCO-IHE Institute for Water Education, Delft, The Netherlands, 2014. [Google Scholar]
- Rieger, L.; Gillot, S.; Langergraber, G.; Ohtsuki, T.; Shaw, A.; Takacs, I.; Winkler, S. Guidelines for Using Activated Sludge Models; IWA Publishing: London, UK, 2012; ISBN 1843391740. [Google Scholar]
- Elawwad, A.; Matta, M.; Abo-Zaid, M.; Abdel-Halim, H. Plant-wide modeling and optimization of a large-scale WWTP using BioWin’s ASDM model. J. Water Process. Eng. 2019, 31, 100819. [Google Scholar] [CrossRef]
- Zhao, W.H.; Huang, Y.; Wang, M.X.; Pan, C.; Li, X.Y.; Peng, Y.Z.; Li, B.K. Post-endogenous denitrification and phosphorus removal in an alternating anaerobic/oxic/anoxic (AOA) system treating low carbon/nitrogen (C/N) domestic wastewater. Chem. Eng. J. 2018, 339, 450–458. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, H.; Wang, Y.; Wang, S.; Li, J. Research on low-carbon operation mode in AAO-based wastewater treatment plants with low C/N influent. China Environ. Sci. 2022, 42, 5088–5099. [Google Scholar]
- Feng, H.; Zhao, M.; Ding, S. Optimal Control of Biological Nitrogen Removal in A~2/O Process of WWTP. China Water Wastewater 2021, 37, 102–106. [Google Scholar]
- Jiang, L.M.; Zhang, W.; Li, Y.H.; Shao, Y.J.; Zhang, Z.J.; Zhang, M.; He, J.L.; Qiu, J.; Li, W.X.; Wang, J.W.; et al. Applying mass flow analysis and aeration optimization strategy to reduce energy consumption of a full-scale anaerobic/anoxic/oxic system. J. Water Process. Eng. 2023, 54, 104037. [Google Scholar] [CrossRef]
- T/CAEPI 49-2022; Technical Specification for Low-Carbon Operation Evaluation of Sewage Treatment Plant. China Association of Environmental Protection Industry: Beijing, China, 2022.
Model | Key Features | Number of Processes |
---|---|---|
ASM1 |
| 8 |
ASM2 |
| 19 |
ASM2d |
| 21 |
ASM3 |
| 12 |
Mantis 2 (GPS-X) |
| 56 |
Parameter | Unit | Value | |
---|---|---|---|
Phase 1 | Phase 2 | ||
Hydraulic Retention Time (HRT) | h | 11 | 17.7 |
HRT of anaerobic tank | h | 1.48 | 1.2 |
HRT of anoxic tank | h | 2.0 | 4.2 |
HRT of oxic tank | h | 7.52 | 12.3 |
Mixed Liquid Suspended Solids (MLSS) | mg/L | 3600 | 3500 |
Reflux ratio of sludge | - | 50~100% | |
Reflux ratio of nitrification liquid | - | 100~200% | |
DO of oxic tank | mg/L | 2~3 |
Parameter | Symbol | Default Value in GPS-X | Season | Calibration Value | Referred Values | References |
---|---|---|---|---|---|---|
Aerobic decay coefficient of PAOs | bbpcon | 0.2 | Spring and autumn | 0.10 | 0.10~0.20 | [25] |
Summer | 0.15 | |||||
Aerobic decay rate of AOB | bnhcon | 0.17 | Spring and autumn | 0.13 | Around 0.15 | [26] |
Summer | 0.13 | |||||
Winter | 0.10 | |||||
Aerobic yield of OHOs on soluble substrates | yhaircon | 0.666 | Spring and autumn | 0.80 | 0.4~0.8 | [27] |
Summer | 0.75 | |||||
Winter | 0.80 | |||||
Aerobic yield of PAOs | ypaircon | 0.639 | All | 0.75 | 0.625~0.821 | [28] |
Aerobic yield reduction coefficient of OHOs | bhcon | 0.62 | Spring and autumn | 0.45 | 0.4~0.65 | [29] |
Summer | 0.4 | |||||
Winter | 0.5 | |||||
Anaerobic yield of OHOs on soluble substrates | yhanocon | 0.533 | Spring and autumn | 0.55 | 0.50~0.65 | [25] |
Summer | 0.5 | |||||
Winter | 0.5 | |||||
Hydrolysis rate constant of Xs | khcon | 3 | All | 2.5 | 2~5.2 | [30] |
Maximum specific growth rate (of OHOs) on substrate | muhcon | 3.2 | Spring and autumn | 3 | 3~6 | [25] |
Summer | 4 | |||||
Winter | 3 | |||||
Maximum specific growth rate of AOB | munchcon | 0.9 | Spring and autumn | 1 | 0.25~2.10 | [31] |
Summer | 0.8 | |||||
Winter | 1.2 | |||||
PHA storage yield | ypo4con | 0.4 | Spring and autumn | 0.25 | 0.10~0.40 | [28] |
Winter | 0.3 | |||||
Reduction factor for anaerobic hydrolysis | nsanaerxcon | 0.4 | All | 0.3 | 0.2~0.4 | [25] |
Reduction factor for anoxic hydrolysis | nsanoxcon | 0.8 | All | 0.6 | 0.6~0.8 | [25] |
Saturation coefficient of ammonia for AOB | kalsnhcon | 0.7 | Summer | 0.65 | 0.35~1.00 | [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Hu, Z.; Cheng, H.; Xiao, J.; Wu, L. Process Modeling and Its Application in Municipal Wastewater Treatment Plant Based on Seasonal Temperature Variations: A Case Study in Eastern China. Water 2025, 17, 994. https://doi.org/10.3390/w17070994
Tian Y, Hu Z, Cheng H, Xiao J, Wu L. Process Modeling and Its Application in Municipal Wastewater Treatment Plant Based on Seasonal Temperature Variations: A Case Study in Eastern China. Water. 2025; 17(7):994. https://doi.org/10.3390/w17070994
Chicago/Turabian StyleTian, Yaxuan, Zhirong Hu, Hude Cheng, Jianjian Xiao, and Lei Wu. 2025. "Process Modeling and Its Application in Municipal Wastewater Treatment Plant Based on Seasonal Temperature Variations: A Case Study in Eastern China" Water 17, no. 7: 994. https://doi.org/10.3390/w17070994
APA StyleTian, Y., Hu, Z., Cheng, H., Xiao, J., & Wu, L. (2025). Process Modeling and Its Application in Municipal Wastewater Treatment Plant Based on Seasonal Temperature Variations: A Case Study in Eastern China. Water, 17(7), 994. https://doi.org/10.3390/w17070994