Hourly Flow Forecasting in a Karst Watershed: The Iton River (France)
Abstract
:1. Introduction
2. Artificial Neural Networks: Brief Review
2.1. General Principle
2.2. Multi-Layered Perceptron
3. Methods
Performance Assessment
4. Case Study and Data Used
5. Results and Discussion
5.1. ANN Architecture
5.2. Application of ANN Model: Flood Prediction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khorchani, M.; Blanpain, O. Development of a Discharge Equation for Side Weirs Using Artificial Neural Networks. J. Hydroinform. 2005, 7, 31–39. [Google Scholar] [CrossRef]
- Coulibaly, P.; Anctil, F.; Bobée, B. Daily Reservoir Inflow Forecasting Using Artificial Neural Networks with Stopped Training Approach. J. Hydrol. 2000, 230, 244–257. [Google Scholar] [CrossRef]
- Lallahem, S.; Mania, J. A Nonlinear Rainfall-Runoff Model Using Neural Network Technique: Example in Fractured Porous Media. Math. Comput. Model. 2003, 37, 1047–1061. [Google Scholar] [CrossRef]
- Riad, S. Typologie et Analyse Hydrologique Des Eaux Superficielles à Partir de Quelques Bassins Versants Représentatifs du Maroc. Ph.D. Thesis, Université de Lille, Lille, France, 2003. Available online: https://theses.fr/2003LIL10122 (accessed on 17 March 2025).
- Toukourou, M. Application de l’apprentissage Artificiel à La Prévision Des Crues Éclair. Ph.D. Thesis, École Nationale Supérieure des Mines de Paris, Paris, France, 2009. Available online: https://theses.fr/2009ENMP1669 (accessed on 17 March 2025).
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial Neural Networks in Hydrology. II: Hydrologic Applications. J. Hydrol. Eng. 2000, 5, 124–137. [Google Scholar] [CrossRef]
- Thiria, S.; Lechevallier, Y.; Gascuel, O. Statistique et Méthodes Neuronales; Sciences sup; Dunod: Malakoff, France, 1997; ISBN 2-10-003544-4. [Google Scholar]
- Taud, H.; Mas, J.F. Multilayer Perceptron (MLP). In Geomatic Approaches for Modeling Land Change Scenarios; Camacho Olmedo, M.T., Paegelow, M., Mas, J.-F., Escobar, F., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 451–455. ISBN 978-3-319-60801-3. [Google Scholar]
- Lippmann, R. An Introduction to Computing with Neural Nets. IEEE ASSP Mag. 1987, 4, 4–22. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer Feedforward Networks Are Universal Approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Najjar, Y.M.; Basheer, I.A.; Hajmeer, M.N. Computational Neural Networks for Predictive Microbiology: I. Methodology. Int. J. Food Microbiol. 1997, 34, 27–49. [Google Scholar] [CrossRef] [PubMed]
- Lek, S.; Dimopoulos, I.; Derraz, M.; El Ghachtoul, Y. Modélisation de la relation pluie-débit à l’aide des réseaux de neurones artificiels. Rev. Sci. L’eau J. Water Sci. 1996, 9, 319–331. [Google Scholar] [CrossRef]
- Boleratz, B.L.; Oscar, T.P. Use of ComBase Data to Develop an Artificial Neural Network Model for Nonthermal Inactivation of in Milk and Beef and Evaluation of Model Performance and Data Completeness Using the Acceptable Prediction Zones Method. J. Food Saf. 2022, 42, e12983. [Google Scholar] [CrossRef]
- Funahashi, K.-I. On the Approximate Realization of Continuous Mappings by Neural Networks. Neural Netw. 1989, 2, 183–192. [Google Scholar] [CrossRef]
- Chokmani, K.; Ouarda, T.B.M.J.; Hamilton, S.; Ghedira, M.H.; Gingras, H. Comparison of Ice-Affected Streamflow Estimates Computed Using Artificial Neural Networks and Multiple Regression Techniques. J. Hydrol. 2008, 349, 383–396. [Google Scholar] [CrossRef]
- Bowden, G.J.; Dandy, G.C.; Maier, H.R. Input Determination for Neural Network Models in Water Resources Applications. Part 1—Background and Methodology. J. Hydrol. 2005, 301, 75–92. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Organisation Meteorologique Mondiale. Intercomparison of Conceptual Models Used in Operational Hydrological Forescasting—OMM (WMO) N° 429; Secretariat of the World Meteorological Organization: Geneva, Switzerland, 1975. [Google Scholar]
- Siou, L.K.A. Modélisation Des Crues de Bassins Karstiques Par Réseaux de Neurones. Cas Du Bassin Du Lez (Hérault); Université Montpellier II—Sciences et Techniques du Languedoc: Montpellier, France, 2011; Available online: https://theses.hal.science/tel-00649103 (accessed on 17 March 2025).
- Masson, E.; Kharroubi, O.; Blanpain, O.; Lallahem, S. Chroniques Hydrométriques et Prévision Des Crues Par Modélisation Hydrologique à Base de Réseau de Neurones Artificiels (RNA) Dans Le Bassin-Versant de l’Eure. Rev. Nord. Hors Série 2011, 16, 35–45. [Google Scholar]
- Moguedet, G.; Marchand, Y.; Masson, V.; Papin, H.; Vauthier, S.; Charnet, F.; Le Moine, B. Notice Explicative, Carte Géol. France (1/50 000), Feuille La Loupe (253); BRGM: Orléans, France, 2000; 102p. [Google Scholar]
- Ménillet, F. Avec La Collaboration Des Différents Services Du B.R.G.M. Orléans et de R.VERMEIRE. (1971)—Notice Explicative, Carte Géol. France (1/50000), Feuille Chartres (255); Bureau de Recherches Géologiques et Minières: Orléans, France, 1971; 35p. [Google Scholar]
- Kuntz, G.; Dewolf, Y.; Frileux, P.-N.; Monciardini, C.; De La Quérière, P.; Verron, G. Notice Explicative, Carte Géol. France (1/50000), Feuille Breteuil-Sur-Iton (179); BRGM: Orléans, France, 1982; 38p. [Google Scholar]
Flood Event | Flow Rate (m3s−1) | Level of Alert |
---|---|---|
December 1994 | 6.4 | Green |
January 1995 | 10.2 | Yellow |
February 1995 | 8.4 | Yellow |
March 1995 | 8.8 | Yellow |
April 1995 | 7.9 | Green |
January 1998 | 7.6 | Green |
November 2000 | 9.0 | Yellow |
December 2000 | 9.8 | Yellow |
January 2001 | 14.0 | Orange and red |
February 2001 | 12.7 | Orange and red |
March 2001 | 17.9 | Orange and red |
May 2001 | 9.4 | Yellow |
December 2001 | 7.4 | Green |
January 2002 | 8.4 | Yellow |
Rainfall Input | ||||||
---|---|---|---|---|---|---|
Flow rate input | NASH criterion | |||||
22 | 19 | 13 | 7 | 1 | ||
30 | 0.99398 | 0.99406 | 0.99421 | 0.99397 | 0.99383 | |
25 | 0.99394 | 0.994 | 0.99377 | 0.99382 | 0.99364 | |
19 | 0.99399 | 0.99406 | 0.99383 | 0.99384 | 0.99386 | |
13 | 0.99405 | 0.99363 | 0.99374 | 0.99385 | 0.99397 | |
7 | 0.99368 | 0.99402 | 0.99398 | 0.99371 | 0.99384 | |
1 | 0.99343 | 0.99339 | 0.99363 | 0.99372 | 0.99323 | |
MARE (%) | ||||||
30 | 2.181 | 2.143 | 2.137 | 2.198 | 2.176 | |
25 | 2.191 | 2.149 | 2.206 | 2.138 | 2.323 | |
19 | 2.195 | 2.146 | 2.208 | 2.143 | 2.189 | |
13 | 2.173 | 2.254 | 2.199 | 2.234 | 2.141 | |
7 | 2.211 | 2.239 | 2.150 | 2.249 | 2.227 | |
1 | 2.599 | 2.585 | 2.426 | 2.380 | 2.495 | |
CP | ||||||
30 | 0.915 | 0.916 | 0.918 | 0.915 | 0.913 | |
25 | 0.914 | 0.915 | 0.912 | 0.913 | 0.910 | |
19 | 0.915 | 0.916 | 0.913 | 0.913 | 0.913 | |
13 | 0.916 | 0.910 | 0.911 | 0.913 | 0.915 | |
7 | 0.910 | 0.915 | 0.915 | 0.911 | 0.913 | |
1 | 0.907 | 0.906 | 0.910 | 0.911 | 0.904 |
PH | Training | Test | Validation | ||||||
---|---|---|---|---|---|---|---|---|---|
MARE (%) | NASH | CP | MARE (%) | NASH | CP | MARE (%) | NASH | CP | |
T + 6 h | 3.463 | 0.989 | 0.419 | 3.331 | 0.990 | 0.872 | 3.589 | 0.989 | 0.929 |
T + 12 h | 4.588 | 0.981 | 0.492 | 4.410 | 0.983 | 0.888 | 4.513 | 0.983 | 0.946 |
T + 24 h | 6.185 | 0.960 | 0.517 | 6.025 | 0.962 | 0.882 | 6.097 | 0.962 | 0.929 |
T + 48 h | 8.661 | 0.909 | 0.478 | 8.406 | 0.914 | 0.838 | 8.390 | 0.918 | 0.887 |
Alert | T + 6 | T + 12 | T + 18 | T + 24 | T + 48 | |
---|---|---|---|---|---|---|
MARE (%) | Green | 4.01 | 4.94 | 5.83 | 6.46 | 8.48 |
Yellow | 1.59 | 2.48 | 3.16 | 3.97 | 7.52 | |
Orange and red | 1.58 | 2.53 | 4.94 | 6.69 | 10.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharroubi, O.; Achour, R.; Ammami, M.-T.; Benamar, A. Hourly Flow Forecasting in a Karst Watershed: The Iton River (France). Water 2025, 17, 977. https://doi.org/10.3390/w17070977
Kharroubi O, Achour R, Ammami M-T, Benamar A. Hourly Flow Forecasting in a Karst Watershed: The Iton River (France). Water. 2025; 17(7):977. https://doi.org/10.3390/w17070977
Chicago/Turabian StyleKharroubi, Ouissem, Raouf Achour, Mohamed-Tahar Ammami, and Ahmed Benamar. 2025. "Hourly Flow Forecasting in a Karst Watershed: The Iton River (France)" Water 17, no. 7: 977. https://doi.org/10.3390/w17070977
APA StyleKharroubi, O., Achour, R., Ammami, M.-T., & Benamar, A. (2025). Hourly Flow Forecasting in a Karst Watershed: The Iton River (France). Water, 17(7), 977. https://doi.org/10.3390/w17070977