Aged Polystyrene Microplastics Accelerate the Photo-Reduction of Chromium(VI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Experimental Procedures
2.3. Filtrate Analysis
2.4. Characterization of MPs
3. Results and Discussion
3.1. The Effect of PS-MPs on Cr(VI)
3.2. Characterization of Representative MPs
3.2.1. Dynamic Alterations in the Physical Properties of MPs
3.2.2. Changes in Chemical Properties of MPs
3.3. Specific Alterations in Fluorescence Properties
3.4. The Reduction Process of Cr(VI) Mediated by PS-MPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thompson, R.C.; Swan, S.H.; Moore, C.J.; vom Saal, F.S. Our plastic age. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1973–1976. [Google Scholar]
- Plastics Europe. Backgrounder to Press Release on “Plastics—The Facts 2022”. Available online: https://plasticseurope.org/media/backgrounder-plastics-the-facts-2022/ (accessed on 11 February 2025).
- Organisation for Economic Co-Operation and Development. Global Plastics Outlook. Available online: https://www.oecd.org/en/publications/global-plastics-outlook_de747aef-en.html (accessed on 16 February 2025).
- Picó, Y.; Barceló, D. Analysis and Prevention of Microplastics Pollution in Water: Current Perspectives and Future Directions. ACS Omega 2019, 4, 6709–6719. [Google Scholar] [CrossRef] [PubMed]
- Rillig, M.C. Microplastic in Terrestrial Ecosystems and the Soil? Environ. Sci. Technol. 2012, 46, 6453–6454. [Google Scholar] [CrossRef]
- Ouyang, Z.; Li, S.; Zhao, M.; Wangmu, Q.; Ding, R.; Xiao, C.; Guo, X. The aging behavior of polyvinyl chloride microplastics promoted by UV-activated persulfate process. J. Hazard. Mater. 2022, 424, 127461. [Google Scholar] [CrossRef]
- Zhang, Y.; Kang, S.; Allen, S.; Allen, D.; Gao, T.; Sillanpää, M. Atmospheric microplastics: A review on current status and perspectives. Earth-Sci. Rev. 2020, 203, 103118. [Google Scholar]
- Rotjan, R.D.; Sharp, K.H.; Gauthier, A.E.; Yelton, R.; Lopez, E.M.B.; Carilli, J.; Kagan, J.C.; Urban-Rich, J. Patterns, dynamics and consequences of microplastic ingestion by the temperate coral, Astrangia poculata. Proc. R. Soc. B Biol. Sci. 2019, 286, 20190726. [Google Scholar] [CrossRef]
- Hammer, J.; Kraak, M.H.S.; Parsons, J.R. Plastics in the Marine Environment: The Dark Side of a Modern Gift. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2012; pp. 1–44. [Google Scholar]
- Dong, Y.; Gao, M.; Song, Z.; Qiu, W. Adsorption mechanism of As(III) on polytetrafluoroethylene particles of different size. Environ. Pollut. 2019, 254, 112950. [Google Scholar]
- Luo, H.; Liu, C.; He, D.; Xu, J.; Sun, J.; Li, J.; Pan, X. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions. J. Hazard. Mater. 2022, 423, 126915. [Google Scholar]
- Cao, Y.; Zhao, M.; Ma, X.; Song, Y.; Zuo, S.; Li, H.; Deng, W. A critical review on the interactions of microplastics with heavy metals: Mechanism and their combined effect on organisms and humans. Sci. Total Environ. 2021, 788, 147620. [Google Scholar]
- Khalid, N.; Hussain, M.; Young, H.S.; Boyce, B.; Aqeel, M.; Noman, A. Effects of road proximity on heavy metal concentrations in soils and common roadside plants in Southern California. Environ. Sci. Pollut. Res. 2018, 25, 35257–35265. [Google Scholar]
- Sun, Y.; Wang, X.; Xia, S.; Zhao, J. Cu(II) adsorption on Poly(Lactic Acid) Microplastics: Significance of microbial colonization and degradation. Chem. Eng. J. 2022, 429, 132306. [Google Scholar] [CrossRef]
- Guo, X.; Wang, J. Projecting the sorption capacity of heavy metal ions onto microplastics in global aquatic environments using artificial neural networks. J. Hazard. Mater. 2021, 402, 123709. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Deng, J.; Liang, J.; Xia, X. Comparison of lead adsorption on the aged conventional microplastics, biodegradable microplastics and environmentally-relevant tire wear particles. Chem. Eng. J. 2023, 460, 141838. [Google Scholar] [CrossRef]
- Kalčíková, G.; Skalar, T.; Marolt, G.; Jemec Kokalj, A. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms. Water Res. 2020, 175, 115644. [Google Scholar] [CrossRef]
- Ho, W.-K.; Law, J.C.-F.; Zhang, T.; Leung, K.S.-Y. Effects of Weathering on the Sorption Behavior and Toxicity of Polystyrene Microplastics in Multi-solute Systems. Water Res. 2020, 187, 116419. [Google Scholar] [CrossRef]
- Mao, R.; Lang, M.; Yu, X.; Wu, R.; Yang, X.; Guo, X. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. J. Hazard. Mater. 2020, 393, 122515. [Google Scholar] [CrossRef]
- Chen, C.C.; Zhu, X.; Xu, H.; Chen, F.; Ma, J.; Pan, K. Copper Adsorption to Microplastics and Natural Particles in Seawater: A Comparison of Kinetics, Isotherms, and Bioavailability. Environ. Sci. Technol. 2021, 55, 13923–13931. [Google Scholar] [CrossRef]
- Sarin, V.; Pant, K.K. Removal of chromium from industrial waste by using eucalyptus bark. Bioresour. Technol. 2006, 97, 15–20. [Google Scholar] [CrossRef]
- Liang, Q.; Luo, H.; Geng, J.; Chen, J. Facile one-pot preparation of nitrogen-doped ultra-light graphene oxide aerogel and its prominent adsorption performance of Cr(VI). Chem. Eng. J. 2018, 338, 62–71. [Google Scholar] [CrossRef]
- Liao, Y.-l.; Yang, J.-y. Microplastic serves as a potential vector for Cr in an in-vitro human digestive model. Sci. Total Environ. 2020, 703, 134805. [Google Scholar] [CrossRef]
- Castro Monsores, K.G.d.; Silva, A.O.d.; Sant’ Ana Oliveira, S.d.; Weber, R.P.; Filho, P.F.; Monteiro, S.N. Influence of ultraviolet radiation on polystyrene. J. Mater. Res. Technol. 2021, 13, 359–365. [Google Scholar]
- Zhang, J.; Wei, J.; Hu, T.; Du, L.; Chen, Z.; Zhang, Y.; Zhang, W. Polystyrene microplastics reduce Cr(VI) and decrease its aquatic toxicity under simulated sunlight. J. Hazard. Mater. 2023, 445, 130483. [Google Scholar] [PubMed]
- Tong, L.; Duan, P.; Tian, X.; Huang, J.; Ji, J.; Chen, Z.; Yang, J.; Yu, H.; Zhang, W. Polystyrene microplastics sunlight-induce oxidative dissolution, chemical transformation and toxicity enhancement of silver nanoparticles. Sci. Total Environ. 2022, 827, 154180. [Google Scholar]
- Wang, H.; Liu, P.; Wang, M.; Wu, X.; Shi, Y.; Huang, H.; Gao, S. Enhanced phototransformation of atorvastatin by polystyrene microplastics: Critical role of aging. J. Hazard. Mater. 2021, 408, 124756. [Google Scholar] [CrossRef]
- Zhang, P.; Tang, X.; Qin, N.; Shuai, Y.; Wang, J.; Wang, H.; Ouyang, Z.; Jia, H. Advanced understanding of the natural forces accelerating aging and release of black microplastics (tire wear particles) based on mechanism and toxicity analysis. Water Res. 2024, 266, 122409. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, G.; Shen, P.; Zhang, H.; Ma, D.; Chu, K. Lewis Acid Fe-V Pairs Promote Nitrate Electroreduction to Ammonia. Adv. Funct. Mater. 2023, 33, 2211537. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Tian, L.; Liu, X.; Qi, Z.; Ma, Y.; Ji, R.A.-O.; Chen, W.A.-O. Aging Significantly Affects Mobility and Contaminant-Mobilizing Ability of Nanoplastics in Saturated Loamy Sand. Environ. Sci. Technol. 2019, 53, 5805–5815. [Google Scholar]
- Ouyang, Z.; Li, S.; Xue, J.; Liao, J.; Xiao, C.; Zhang, H.; Li, X.; Liu, P.; Hu, S.; Guo, X.; et al. Dissolved organic matter derived from biodegradable microplastic promotes photo-aging of coexisting microplastics and alters microbial metabolism. J. Hazard. Mater. 2023, 445, 130564. [Google Scholar] [CrossRef]
- Prata, J.C.; Reis, V.; Paço, A.; Martins, P.; Cruz, A.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T. Effects of spatial and seasonal factors on the characteristics and carbonyl index of (micro)plastics in a sandy beach in Aveiro, Portugal. Sci. Total Environ. 2020, 709, 135892. [Google Scholar] [CrossRef]
- Liu, P.; Li, H.; Wu, J.; Wu, X.; Shi, Y.; Yang, Z.; Huang, K.; Guo, X.; Gao, S. Polystyrene microplastics accelerated photodegradation of co-existed polypropylene via photosensitization of polymer itself and released organic compounds. Water Res. 2022, 214, 118209. [Google Scholar]
- Zhou, Z.; Huang, G.; Xiong, Y.; Zhou, M.; Zhang, S.; Tang, C.Y.; Meng, F. Unveiling the Susceptibility of Functional Groups of Poly(ether sulfone)/Polyvinylpyrrolidone Membranes to NaOCl: A Two-Dimensional Correlation Spectroscopic Study. Environ. Sci. Technol. 2017, 51, 14342–14351. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Song, J.; Wang, X.C.; Jin, X. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant. J. Environ. Sci. 2018, 64, 181–189. [Google Scholar]
- Lasch, P.; Noda, I. Two-Dimensional Correlation Spectroscopy (2D-COS) for Analysis of Spatially Resolved Vibrational Spectra. Appl. Spectrosc. 2019, 73, 359–379. [Google Scholar] [PubMed]
- Chen, C.; Du, R.; Tang, J.; Wang, B.; Li, F.; Zhang, Z.; Yu, G. Characterization of microplastic-derived dissolved organic matter in freshwater: Effects of light irradiation and polymer types. Environ. Int. 2024, 185, 108536. [Google Scholar]
- Yan, C.; Wang, X.; Nie, M.; Mo, X.; Ding, M.; Chen, J.; Yang, Y. Characteristics of microplastic-derived dissolved organic matter and its binding with pharmaceuticals unveiled by fluorescence spectroscopy and two-dimensional correlation spectroscopy. Sci. Total Environ. 2024, 908, 168190. [Google Scholar]
- Song, F.; Li, T.; Hur, J.; Shi, Q.; Wu, F.; He, W.; Shi, D.; He, C.; Zhou, L.; Ruan, M.; et al. Molecular-level insights into the heterogeneous variations and dynamic formation mechanism of leached dissolved organic matter during the photoaging of polystyrene microplastics. Water Res. 2023, 242, 120114. [Google Scholar]
- Li, J.; Li, X.; Ma, S.; Zhao, W.; Xie, W.; Ma, J.; Yao, Y.; Wei, W. Comparing the influence of humic/fulvic acid and tannic acid on Cr(VI) adsorption onto polystyrene microplastics: Evidence for the formation of Cr(OH)3 colloids. Chemosphere 2022, 307, 135697. [Google Scholar]
- You, H.; Huang, B.; Cao, C.; Liu, X.; Sun, X.; Xiao, L.; Qiu, J.; Luo, Y.; Qian, Q.; Chen, Q. Adsorption–desorption behavior of methylene blue onto aged polyethylene microplastics in aqueous environments. Mar. Pollut. Bull. 2021, 167, 112287. [Google Scholar]
- Mu, S.; Sun, D.; Liu, Y.; Li, J.; Zhang, H.; Wang, J. Ultraviolet-visible and fluorescence spectra indicate the binding and transformation properties of hexavalent chromium in DOM solution. J. Environ. Chem. Eng. 2022, 10, 107158. [Google Scholar]
- Croué, J.P.; Benedetti, M.F.; Violleau, D.; Leenheer, J.A. Characterization and Copper Binding of Humic and Nonhumic Organic Matter Isolated from the South Platte River: Evidence for the Presence of Nitrogenous Binding Site. Environ. Sci. Technol. 2003, 37, 328–336. [Google Scholar]
- Shi, Z.; Wang, P.; Peng, L.; Lin, Z.; Dang, Z. Kinetics of Heavy Metal Dissociation from Natural Organic Matter: Roles of the Carboxylic and Phenolic Sites. Environ. Sci. Technol. 2016, 50, 10476–10484. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Hong, S.; Hur, J. Copper-binding properties of microplastic-derived dissolved organic matter revealed by fluorescence spectroscopy and two-dimensional correlation spectroscopy. Water Res. 2021, 190, 116775. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Ou, J.-L.; Duan, Z.-K.; Xing, Z.-J.; Wang, Y. Adsorption of Cr(VI) on bamboo bark-based activated carbon in the absence and presence of humic acid. Colloids Surf. A 2015, 481, 108–116. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; He, Y.; Wang, J.; Zeng, N.; Zhan, X. Photoaging process and mechanism of four commonly commercial microplastics. J. Hazard. Mater. 2023, 451, 131151. [Google Scholar] [CrossRef] [PubMed]
- Noda, I. Two-dimensional codistribution spectroscopy to determine the sequential order of distributed presence of species. J. Mol. Struct. 2014, 1069, 50–59. [Google Scholar]
- Ding, R.; Ouyang, Z.; Zhang, X.; Dong, Y.; Guo, X.; Zhu, L. Biofilm-Colonized versus Virgin Black Microplastics to Accelerate the Photodegradation of Tetracycline in Aquatic Environments: Analysis of Underneath Mechanisms. Environ. Sci. Technol. 2023, 57, 5714–5725. [Google Scholar]
- Zou, C.; Larisika, M.; Nagy, G.; Srajer, J.; Oostenbrink, C.; Chen, X.; Knoll, W.; Liedberg, B.; Nowak, C. Two-Dimensional Heterospectral Correlation Analysis of the Redox-Induced Conformational Transition in Cytochrome c Using Surface-Enhanced Raman and Infrared Absorption Spectroscopies on a Two-Layer Gold Surface. J. Phys. Chem. B. 2013, 117, 9606–9614. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Qin, S.; Wang, Q.; Zhang, P.; Ouyang, Z. Aged Polystyrene Microplastics Accelerate the Photo-Reduction of Chromium(VI). Water 2025, 17, 1102. https://doi.org/10.3390/w17071102
Cheng Y, Qin S, Wang Q, Zhang P, Ouyang Z. Aged Polystyrene Microplastics Accelerate the Photo-Reduction of Chromium(VI). Water. 2025; 17(7):1102. https://doi.org/10.3390/w17071102
Chicago/Turabian StyleCheng, Yongkang, Sainan Qin, Qing Wang, Puxing Zhang, and Zhuozhi Ouyang. 2025. "Aged Polystyrene Microplastics Accelerate the Photo-Reduction of Chromium(VI)" Water 17, no. 7: 1102. https://doi.org/10.3390/w17071102
APA StyleCheng, Y., Qin, S., Wang, Q., Zhang, P., & Ouyang, Z. (2025). Aged Polystyrene Microplastics Accelerate the Photo-Reduction of Chromium(VI). Water, 17(7), 1102. https://doi.org/10.3390/w17071102