Water, Agriculture, and Aquaculture: Components of a Complex Interdependent System †
1. Introduction and Overview
2. The Underlying System as a Common Denominator
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Graham, N.A.; Pueppke, S.G.; Nurtazin, S.; Konysbayev, T.; Gibadulin, F.; Sailauiv, M. The changing dynamics of Kazakhstan’s fisheries sector: From the early Soviet Era to the twenty-first century. Water 2022, 14, 1409. https://doi.org/10.3390/w14091409.
- Banini, P.K.; Anyan, K.F.; Zornu, J.; Ackah, M.; Batsa, D.N.; Issifu, K.; Amankwah, A.; Ali, S.E.; Addo, S.; Cudjoe, K.S. Rethinking freshwater cage aquaculture: A case in Ghana. Water 2024, 16, 3054. https://doi.org/10.3390/w16213054.
- Ogunji, J.; Wuertz, S. Aquaculture development in Nigeria: The second biggest aquaculture producer in Africa. Water 2023, 14, 4224. https://doi.org/10.3390/w15244224.
- Ibrahim, L.A.; Shaghaleh, H.; El-Kassar, G.M.; Abu-Hashim, M.; Elsadek, E.A.; Hamoud, Y.A. Aquaponics: A sustainable path to food sovereignty and enhanced water use efficiency. Water 2023, 15, 4310. https://doi.org/10.3390/w15244310.
- Carthy, B.; Somers, B.; Wyseure, G. Irrigation performance assessment, opportunities with wireless sensors and satellites. Water 2024, 16, 1762. https://doi.org/10.3390/w16131762.
- Irfan, M.; Maqsood, M.A.; ur Rehman, H.; Mahboob, W.; Sarwar, N.; Hafeez, O.; Hussain, S.; Ercisli, S.; Akhtar, M.; Aziz, T. Silicon nutrition in plants under water-deficit conditions: Overview and prospects. Water 2023, 15, 739. https://doi.org/10.3390/w15040739.
References
- Rockström, J.; Donges, J.F.; Fetzer, I.; Martin, M.A.; Wang-Erlandsson, L.; Richardson, K. Planetary boundaries guide humanity’s future on earth. Nat. Rev. Earth Environ. 2024, 5, 773–788. [Google Scholar] [CrossRef]
- Huang, Z.; Hejazi, M.; Tang, Q.; Vernon, C.R.; Liu, Y.; Chen, M.; Calvin, K. Global agricultural green and blue water consumption under future climate and land use changes. J. Hydrol. 2019, 574, 242–256. [Google Scholar] [CrossRef]
- Niazi, H.; Wild, T.B.; Turner, S.W.D.; Graham, N.T.; Hejazi, M.; Msangi, S.; Kim, S.; Lamontagne, J.R. Global peak water limit of future groundwater withdrawals. Nat. Sustain. 2024, 7, 413–422. [Google Scholar] [CrossRef]
- Grech-Madin, C. Water and warfare: The evolution of the water taboo. Int. Secur. 2021, 45, 84–125. [Google Scholar] [CrossRef]
- Naylor, R.; Fang, S.; Fanzo, J. A global view of aquaculture policy. Food Policy 2023, 116, 102422. [Google Scholar] [CrossRef]
- The State of World Fisheries and Aquaculture 2024; Food and Agricultural Organization of the United Nations: Rome, Italy, 2024; 264p. [CrossRef]
- Jiang, Q.; Bhattarai, N.; Pahlow, M.; Xu, Z. Environmental sustainability and footprints of global agriculture. Res. Conserv. Recycl. 2022, 180, 106183. [Google Scholar] [CrossRef]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Jijakli, M.H.; Kotzen, B. Towards commercial aquaponics: A review of systems, designs, scales and nomenclature. Aquac. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Liang, Y.; Nikolic, M.; Bélanger, R.; Gong, H.; Song, A. Silicon in Agriculture from Theory to Practice; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Steffen, W.; Rockström, J.; Richardson, K.; Lenton, T.M.; Folke, C.; Liverman, D.; Summerhayes, C.P.; Barnosky, A.D.; Cornell, S.E.; Crucifix, M.; et al. Trajectories of the earth system in the Anthropocene. Proc. Natl. Acad. Sci. USA. 2018, 115, 8252–8259. [Google Scholar] [CrossRef] [PubMed]
- Howells, M.; Hermann, S.; Welsch, M.; Bazilian, M.; Segerström, R.; Alfstad, T.; Gielen, D.; Rogner, H.; Fischer, G.; Van Velthuizen, H.; et al. Integrated analysis of climate change, land-use, energy and water strategies. Nat. Clim. Change 2013, 3, 621–626. [Google Scholar] [CrossRef]
- Burnett, K.; Wada, C.A. Accounting for externalities in the water energy food nexus. In The Water-Energy-Food Nexus: Human-Environmental Security in the Asia-Pacific Ring of Fire; Endo, A., Oh, T., Eds.; Springer: Singapore, 2018; pp. 261–272. [Google Scholar] [CrossRef]
- Dargin, J.; Daher, B.; Mohtar, R.H. Complexity versus simplicity in water energy food nexus (WEF) assessment tools. Sci. Total Environ. 2019, 650, 1566–1575. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, T.R.; Drootof, A.; Scott, C.A. The water-energy-food nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Bizikova, L. Integrating the water-energy-food nexus into policy and decision-making, opportunities and challenges. In Policy and Governance in the Water-Energy-Food Nexus; Koulouri, A., Mouraviev, N., Eds.; Routledge: London, UK, 2019; pp. 31–47. [Google Scholar] [CrossRef]
- Solano-Pereira, P.; Garcia-González, A.; González, L.J.M. Economic representation in water-energy-food nexus models: A systematic review of system dynamics approaches. Energies 2025, 18, 966. [Google Scholar] [CrossRef]
- Jonsson, E.; Todorovic, A.; Blicharska, M.; Francisco, A.; Grabs, T.; Sušnik, J.; Teutschbein, C. An introduction to data-driven modelling of the water-energy-food-ecosystem nexus. Environ. Model. Softw. 2024, 181, 106182. [Google Scholar] [CrossRef]
- Lawford, R.G. A design for a data and information service to address the knowledge needs of the water-energy-food (W-E-F) nexus and strategies to facilitate its implementation. Front. Environ. Sci. 2019, 7, 56. [Google Scholar] [CrossRef]
- Vance, T.C.; Huang, T.; Butler, K.A. Big data in earth science: Emerging practice and promise. Science 2024, 383, eadh9607. [Google Scholar] [CrossRef] [PubMed]
- Varis, O.; Kummu, M. The major Central Asian river basins: An assessment of vulnerability. Int. J. Water Res. Dev. 2012, 28, 433–452. [Google Scholar] [CrossRef]
- Jones-Crank, J.L. A multi-case institutional analysis of water–energy–food nexus governance. Sustain. Sci. 2024, 19, 1277–1291. [Google Scholar] [CrossRef]
- Iyiola, A.O.; Kolawole, A.S.; Ajayi, F.O.; Ogidi, O.I.; Ogwu, M.C. Sustainable water use and management for agricultural transformation in Africa. In Water Resources for Rural Development; Madhav, S., Srivastav, A.L., Izah, S.C., van Hullebusch, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 287–299. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Huang, J.; Yan, T.; Sun, T. Growing water scarcity, food security and government responses in China. Glob. Food Secur. 2017, 14, 9–17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pueppke, S.G. Water, Agriculture, and Aquaculture: Components of a Complex Interdependent System. Water 2025, 17, 1059. https://doi.org/10.3390/w17071059
Pueppke SG. Water, Agriculture, and Aquaculture: Components of a Complex Interdependent System. Water. 2025; 17(7):1059. https://doi.org/10.3390/w17071059
Chicago/Turabian StylePueppke, Steven G. 2025. "Water, Agriculture, and Aquaculture: Components of a Complex Interdependent System" Water 17, no. 7: 1059. https://doi.org/10.3390/w17071059
APA StylePueppke, S. G. (2025). Water, Agriculture, and Aquaculture: Components of a Complex Interdependent System. Water, 17(7), 1059. https://doi.org/10.3390/w17071059