The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy)
Abstract
1. Introduction
2. Geological and Hydrogeological Setting
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cabrera, M.C.; Custodio, E. Groundwater flow in a volcanic sedimentary coastal aquifer: Telde area; Gran Canaria; Canary Islands; Spain. Hydrogeol. J. 2010, 12, 305–320. [Google Scholar] [CrossRef]
- Custodio, E. Groundwater in volcanic hard rocks. In Groundwater in Fractured Rocks, 1st ed.; Krásný, J., Sharp, J.M., Eds.; Taylor&Francis Group: London, UK, 2007; pp. 95–108. [Google Scholar]
- Baiocchi, A.; Lotti, F.; Piscopo, V. Influence of hydrogeological setting on the arsenic occurrence in groundwater of the volcanic areas of central and southern Italy. Aqua Mundi 2011, 2, 131–142. [Google Scholar] [CrossRef]
- Charlier, J.B.; Lachassagne, P.; Ladouche, B.; Cattan, P.; Moussa, R.; Voltz, M. Structure and hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: A multi-disciplinary experimental approach. J. Hydrol. 2011, 398, 155–170. [Google Scholar] [CrossRef]
- Izquierdo, T. Conceptual hydrogeological model and aquifer system classification of a small volcanic island (La Gomera; Canary Islands). Catena 2014, 626, 119–128. [Google Scholar] [CrossRef]
- Lachassagne, P.; Aunay, B.; Frissant, N.; Guilbert, M. High-resolution hydrogeological model of complex basaltic volcanic islands: A Mayotte; Comoros; case study. Terranova 2014, 26, 307–321. [Google Scholar] [CrossRef]
- Vittecoq, B.; Reninger, P.A.; Lacquement, F.; Martelet, G.; Violette, S. Hydrogeological conceptual model of andesitic watersheds revealed by high-resolution heliborne geophysics. Hydrol. Earth Syst. Sci. 2019, 23, 2321–2338. [Google Scholar] [CrossRef]
- Poncela, R.; Santamarta, J.C.; Garcìa-Gil, A.; Cruz-Pèrez, N.; Skupien, E.; Garcìa-Barba, J. Hydrogeological characterization of heterogeneous volcanic aquifers in the Canary Islands using recession analysis of deep water gallery discharge. J. Hydrol. 2022, 610, 127975. [Google Scholar] [CrossRef]
- Baud, B.; Lachassagne, P.; Dumont, M.; Toulier, A.; Heru, H.; Arif, F.; Dorfliger, N. Review: Andesitic aquifers—Hydrogeological conceptual models and insights relevant to applied hydrogeology. Hydrogeol. J. 2024, 32, 1259–1286. [Google Scholar] [CrossRef]
- Baiocchi, A.; Dragoni, W.; Lotti, F.; Luzzi, G.; Piscopo, V. Outline of the hydrogeology of the Cimino and Vico volcanic area and of the interaction between groundwater and Lake Vico (Lazio Region; central Italy). Boll. Soc. Geol. Ital. 2006, 125, 187–202. [Google Scholar]
- Baye, A.Y.; Razack, M.; Ayenew, T.; Zemedagegnehu, E. Estimating transmissivity using empirical and geostatistical methods in the volcanic aquifers of Upper Awash Basin; central Ethiopia. Environ. Earth Sci. 2013, 69, 1791–1802. [Google Scholar] [CrossRef]
- Vittecoq, B.; Reninger, P.A.; Violette, S.; Martelet, G.; Dewandel, B.; Audru, J.C. Heterogeneity of hydrodynamic properties and groundwater circulation of a coastal andesitic volcanic aquifer controlled by tectonic induced faults and rock fracturing: Martinique island (Lesser Antilles—FWI). J. Hydrol. 2015, 529, 1041–1059. [Google Scholar] [CrossRef]
- Kreyns, P.; Geng, X.; Michael, H.A. The influence of connected heterogeneity on groundwater flow and salinity distributions in coastal volcanic aquifers. J. Hydrol. 2020, 586, 124863. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company, Inc.: New York, NY, USA, 1972; pp. 1–764. [Google Scholar]
- Dagan, G. Flow and Transport in Porous Formation; Springer: Berlin, Germany, 1989. [Google Scholar]
- Brunetti, G.F.A.; Maiolo, M.; Fallico, C.; Severino, G. Unraveling the complexities of a highly heterogeneous aquifer under convergent radial flow conditions. Eng. Comput. 2024, 40, 3115–3130. [Google Scholar] [CrossRef]
- Severino, G.; Fallico, C.; Brunetti, G.F.A. Correlation structure of steady well-type flows through heterogeneous porous media: Results and application. Water Resour. Res. 2024, 60, e2023WR036279. [Google Scholar] [CrossRef]
- Piscopo, V.; Baiocchi, A.; Bicorgna, S.; Lotti, F. Hydrogeological support for estimation of the sustainable well yield in volcanic rocks: Some examples from Central and Southern Italy. In Proceedings of the 36th IAH Congress, Toyama, Japan, 26 October—1 November 2008. [Google Scholar]
- Angelone, M.; Cremisini, C.; Piscopo, V.; Proposito, M.; Spaziani, F. Influence of hydrostratigraphy and structural setting on the arsenic occurrence in groundwater of the Cimino-Vico volcanic area (central Italy). Hydrogeol. J. 2009, 17, 901–914. [Google Scholar] [CrossRef]
- Baiocchi, A.; Coletta, A.; Espositi, L.; Lotti, F.; Piscopo, V. Sustainable groundwater development in a naturally arsenic-contaminated aquifer: The case of the Cimino-Vico volcanic area (Central Italy). Ital. J. Eng. Geol. Environ. 2013, 1, 5–18. [Google Scholar] [CrossRef]
- Armiento, G.; Baiocchi, A.; Cremisini, C.; Crovato, C.; Lotti, F.; Lucentini, L.; Mazzuoli, M.; Nardi, E.; Piscopo, V.; Proposito, M.; et al. An integrated approach to identify water resources for human consumption in an area affected by high natural arsenic content. Water 2015, 7, 5091–5114. [Google Scholar] [CrossRef]
- Capelli, G.; Mastrorillo, L.; Mazza, R.; Petitta, M. Carta delle Unità Idrogeologiche della Regione Lazio; Scala 1:250,000; SELCA: Firenze, Italy, 2012. [Google Scholar]
- Boni, C.; Bono, P.; Capelli, G. Schema idrogeologico dell’Italia centrale. Mem. Soc. Geol. It. 1986, 35, 991–1012. [Google Scholar]
- Capelli, G.; Mazza, R.; Gazzetti, C. Strumenti e Strategie per la Tutela e l’uso Compatibile della Risorsa Idrica nel Lazio. Gli Acquiferi Vulcanici; Pitagora Editrice: Bologna, Italy, 2005; pp. 1–216. [Google Scholar]
- Alley, W.M.; Reilly, T.E.; Franke, O.L. Sustainability of Ground-Water Resources; U.S. Geological Survey: Reston, VA, USA, 1999; 79p. [Google Scholar]
- Bredehoeft, J.D. Safe yield and the water budget myth. Ground Water 1997, 35, 929. [Google Scholar] [CrossRef]
- Kalf, R.P.; Woolley, D.R. Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol. J. 2005, 13, 295–312. [Google Scholar] [CrossRef]
- Bredehoeft, J.D. The water budget revisited: Why hydrogeologists model. Ground Water 2002, 40, 340–345. [Google Scholar] [CrossRef]
- Bredehoeft, J.D.; Alley, W.M. Mining groundwater for sustainable yield. Bridge 2014, 44, 33–41. [Google Scholar]
- Theis, C.V. The source of water derived from wells: Essential factors controlling the response of an aquifer to development. Civ. Eng. 1940, 10, 277–280. [Google Scholar]
- Domenico, P.A.; Schwartz, F.W. Physical and Chemical Hydrogeology. Wiley & Sons: New York, NY, USA, 1990; pp. 1–824. [Google Scholar]
- Zhou, Y. A critical review of groundwater budget myth; safe yield and sustainability. J. Hydrol. 2009, 370, 207–213. [Google Scholar] [CrossRef]
- De Rita, D. Il Vulcanismo Della Regione Lazio. Guide Geologiche Regionali. Lazio; Società Geologica Italiana: Roma, Italy, 1993; Volume 5, pp. 50–64. [Google Scholar]
- Nappi, G.; Renzulli, A.; Santi, P. Evidence of incremental growth in the vulsinian calderas (Central Italy). J. Volcanol. Geotherm. Res. 1991, 47, 13–31. [Google Scholar] [CrossRef]
- Capaccioni, B.; Cinelli, G.; Mostacci, D.; Tositti, L. Long-term risk in a recently active volcanic system: Evaluation of doses and indoor radiological risk in the quaternary Vulsini Volcanic District (Central Italy). J. Volcanol. Geotherm. Res. 2012, 247, 26–36. [Google Scholar] [CrossRef]
- Peccerillo, A.; Manetti, P. The potassium alkaline volcanism of Central-Southern Italy: A review of the data relevant to petrogenesis and geodynamic significance. Trans. Geol. Soc. S. Afr. 1985, 88, 379–384. [Google Scholar]
- Nappi, G.; Capaccioni, B.; Renzulli, A.; Santi, P.; Valentini, L. Stratigraphy of the Orvieto-Bagnoregio ignimbrite eruption (eastern Vulsini District Central Italy). Mem. Descr. Carta Geol. D’It. 1994, 49, 241–254. [Google Scholar]
- Palladino, D.M.; Simei, S.; Sottili, G.; Trigila, R. Integrated approach for the reconstruction of stratigraphy and geology of Quaternary volcanic terrains: An application to the Vulsini volcanoes (central Italy). In Stratigraphy and Geology in Volcanic Areas: Geological Society of America Special Paper; Groppelli, G., Viereck, L., Eds.; Geological Society of America: Boulder, CO, USA, 2010; Volume 464, pp. 66–84. [Google Scholar] [CrossRef]
- Sollevanti, F. Geologic, volcanologic and tectonic setting of theVico-Cimini area, Italy. J. Volcanol. Geotherm. Res. 1983, 17, 203–217. [Google Scholar] [CrossRef]
- Lardini, D.; Nappi, G. I cicli eruttivi del complesso vulcanico Cimino [The eruptive phases of the Cimino volcanic complex]. Rend. Soc. Geol. It. Min. Petr. 1987, 42, 141–153. [Google Scholar]
- Bertagnini, A.; Sbrana, A. Il vulcano di Vico: Stratigrafia del complesso vulcanico e sequenze eruttive delle formazioni piroclastiche [The Vico volcano: Stratigraphy of the volcanic complex and sequence of the eruptions of the pyroclastic units]. Mem. Soc. Geol. It. 1986, 35, 699–713. [Google Scholar]
- De Rita, D.; Di Filippo, M.; Sposato, A. Carta geologica del Complesso Vulcanico Sabatino. In Quaderni de “La Ricerca Scientifica”: Sabatini Volcanic Complex; Di Filippo, M., Ed.; CNR: Rome, Italy, 1987; Volume 114, pp. 33–79. [Google Scholar]
- Mazza, R.; Mastrorillo, L. L’idrologia Regionale nella pianificazione e gestione della risorsa idrica sotterranea. Il dominio vulcanico laziale (Italia centrale). Acque Sotter. 2013, 2, 41–53. [Google Scholar] [CrossRef]
- Allocca, V.; Colantuono, P.; Colella, A.; Piacentini, S.M.; Piscopo, V. Hydraulic properties of ignimbrites: Matrix and fracture permeabilities in two pyroclastic flow deposits from Cimino-Vico volcanoes (Italy). Bull. Eng. Geol. Environ. 2022, 81, 221. [Google Scholar] [CrossRef]
- Piscopo, V.; Armiento, G.; Baiocchi, A.; Mazzuoli, M.; Nardi, E.; Piacentini, S.M.; Proposito, M.; Spaziani, F. Role of high-elevation groundwater flows in the hydrogeology of the Cimino volcano (central Italy) and possibilities to capture drinking water in a geogenically contaminated environment. Hydrogeol. J. 2018, 26, 1027–1045. [Google Scholar] [CrossRef]
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA). Dati Geognostici e Geofisici—Archivio indagini nel sottosuolo (Legge 464/84). Available online: http://portalesgi.isprambiente.it/it/categorie-db/sondaggi (accessed on 18 December 2024).
- Kruseman, G.P.; De Ridder, N.A. Analysis and Evaluation of Pumping Test Data, 2nd ed.; ILRI Publication; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1994; pp. 1–372. [Google Scholar]
- Waterloo Hydrogeologic, Inc. User Manual, Aquifer Test Pro 13.0. Pumping & Slug Test Analysis, Interpretation & Visualization Software; Waterloo Hydrogeologic: Kitchner, ON, Canada, 2023; pp. 1–541. [Google Scholar]
- Ehlig-Economides, C.; Hegeman, P.; Clark, G. Three key elements necessary for successful testing. Oil Gas J. 1994, 92, 30. [Google Scholar]
- Bourdet, D. Well Test Analysis, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2002; pp. 1–426. [Google Scholar]
- Renard, P.; Glenz, D.; Mejias, M. Understanding diagnostic plots for well-test interpretation. Hydrogeol. J. 2009, 17, 589–600. [Google Scholar] [CrossRef]
- Ferroud, A.; Rafini, S.; Chesnaux, R. Using flow dimension sequences to interpret non-uniform aquifers with constant-rate pumping-tests: A review. J. Hydrol. X 2019, 2, 100003. [Google Scholar] [CrossRef]
- Razak, M.; Huntley, D. Assessing transmissivity from specific capacity in a large and heterogeneous alluvial aquifer. Ground Water 1991, 29, 856–861. [Google Scholar] [CrossRef]
- Mace, R. Determination of transmissivity from specific capacity tests in a karst aquifer. Ground Water 1997, 35, 738–742. [Google Scholar] [CrossRef]
- Hamm, S.Y.; Cheong, J.Y.; Jang, S.; Jung, C.Y.; Sang, K.B. Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island; Korea. J. Hydrol. 2005, 310, 111–121. [Google Scholar] [CrossRef]
- Fabbri, P.; Piccinini, L. Assessing transmissivity from specific capacity in an alluvial aquifer in the middle Venetian plain (NE Italy). Water Sci. Technol. 2013, 67, 2000–2008. [Google Scholar] [CrossRef]
- Rotzoll, K.; El-Kadi, A.I. Estimating hydraulic conductivity from specific capacity for Hawaii aquifers; USA. Hydrogeol. J. 2008, 16, 969–979. [Google Scholar] [CrossRef]
- Piscopo, V.; Formica, F.; Lana, L.; Lotti, F.; Pianese, L.; Trifuoggi, M. Relationship between aquifer pumping response and quality of water extracted from wells in an active hydrothermal system: The case of the Island of Ischia (Southern Italy). Water 2020, 12, 2576. [Google Scholar] [CrossRef]
- Theis, C.V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans. Am. Geophys. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- Van Tonder, G.J.; Botha, J.F.; Chiang, W.H.; Kunstmann, H.; Xu, Y. Estimation of the sustainable yields of boreholes in fractured rock formation. J. Hydrol. 2001, 241, 70–90. [Google Scholar] [CrossRef]
- Piscopo, V.; Sbarbati, C.; Dinagde, T.D.; Lotti, F. Practical approach for defining the sustainable yield of wells in low-permeability fractured rocks. Sustainability 2023, 15, 10706. [Google Scholar] [CrossRef]
- Piscopo, V.; Paoletti, M.; Sbarbati, C. Response to Pumping of Wells in Carbonate and Karst Aquifers and Effect on the Assessment of Sustainable Well Yield: Some Examples from Southern Italy. Water 2024, 16, 2664. [Google Scholar] [CrossRef]
- Misstear, B.D.R.; Beeson, S. Using operational data to estimate the reliable yields of water-supply wells. Hydrogeol. J. 2000, 8, 177–187. [Google Scholar] [CrossRef]
Aquifer Class | All | T–P | L | IC |
---|---|---|---|---|
Number | 233 | 26 | 80 | 127 |
Min | 6.06 × 10−6 | 3.00 × 10−5 | 6.00 × 10−6 | 8.00 × 10−6 |
Max | 5.00 × 10−2 | 1.80 × 10−2 | 5.00 × 10−2 | 2.06 × 10−2 |
Mean | 2.30 × 10−3 | 2.27 × 10−3 | 2.46 × 10−3 | 2.20 × 10−3 |
Geometric mean | 6.57 × 10−4 | 6.28 × 10−4 | 6.64 × 10−4 | 6.60 × 10−4 |
Median | 6.00 × 10−4 | 7.15 × 10−4 | 7.75 × 10−4 | 5.20 × 10−4 |
25th perc. | 2.13 × 10−4 | 1.78 × 10−4 | 2.23 × 10−4 | 2.11 × 10−4 |
75th perc. | 2.00 × 10−3 | 1.90 × 10−3 | 2.00 × 10−3 | 2.00 × 10−3 |
Standard error | 3.31 × 10−4 | 7.92 × 10−4 | 7.40 × 10−4 | 3.57 × 10−4 |
Standard deviation | 5.05 × 10−3 | 4.04 × 10−3 | 6.62 × 10−3 | 4.02 × 10−3 |
Variance | 2.55 × 10−5 | 1.63 × 10−5 | 4.38 × 10−5 | 1.62 × 10−5 |
Coefficient of variation | 219.70 | 178.12 | 268.74 | 182.89 |
Skewness | 5.37 | 2.82 | 5.80 | 2.95 |
Kurtosis | 39.32 | 8.92 | 37.43 | 8.91 |
Number | 23 |
---|---|
Min | 5.80 × 10−6 |
Max | 4.00 × 10−2 |
Mean | 4.44 × 10−3 |
Geometric mean | 7.61 × 10−4 |
Median | 8.12 × 10−4 |
25th perc. | 2.10 × 10−4 |
75th perc | 5.80 × 10−3 |
Standard error | 1.88 × 10−3 |
Standard deviation | 9.04 × 10−3 |
Variance | 8.16 × 10−5 |
Coefficient of variation | 203.51 |
Skewness | 3.28 |
Kurtosis | 11.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sbarbati, C.; Paoletti, M.; Piscopo, V. The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy). Water 2025, 17, 409. https://doi.org/10.3390/w17030409
Sbarbati C, Paoletti M, Piscopo V. The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy). Water. 2025; 17(3):409. https://doi.org/10.3390/w17030409
Chicago/Turabian StyleSbarbati, Chiara, Matteo Paoletti, and Vincenzo Piscopo. 2025. "The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy)" Water 17, no. 3: 409. https://doi.org/10.3390/w17030409
APA StyleSbarbati, C., Paoletti, M., & Piscopo, V. (2025). The Role of the Heterogeneity of Volcanic Aquifer Properties in Assessing Sustainable Well Yield: Study Cases from Latium (Central Italy). Water, 17(3), 409. https://doi.org/10.3390/w17030409