Use, Potential, Needs, and Limits of AI in Wastewater Treatment Applications
Abstract
:1. Introduction
2. AI Drivers and Enablers
3. Development of AI Applications in the Wastewater Sector
3.1. AI in System Simulation
3.2. AI for WWTP Monitoring
Biosensors and Soft Sensors
3.3. AI for Fault and Anomaly Diagnosis in WWTP
3.4. Future Developments in Wastewater Treatment by AI Applications
4. Discussion
- -
- old infrastructure: older WWTPs often lack modern monitoring and data collection systems. This can result in sparse, outdated or incomplete data, as these systems may not accurately capture all relevant information.
- -
- human factors: manual data entry and processing is prone to errors, which can significantly affect the overall quality of the data. Human errors can occur at various stages, from data collection to reporting to manual instrument calibration, leading to inaccuracies and gaps.
- -
- sensing technology: even with regular maintenance and calibration, sensor measurements may drift randomly and differently over time, even between same-type sensors exposed to similar environmental conditions. It is not uncommon to experience issues with sensors: examples include failure, calibration difficulties, fouling and blockage, connection problems between sensors, actuators, and the data management system.
- -
- lack of data processing: even in large WWTPs equipped with sensors and SCADA systems, operators rarely monitor the total amount of collected data or have sufficient computer processing capacity to collect, sort, clean, analyze, and interpret them quickly and effectively.
5. Conclusions
- Almost all AI applications in the sector involve predictions of some sort, such as influent or effluent quality, energy consumption, mass flow, or specific process variables and parameters like aeration time, sludge bulking, and settleability.
- Several algorithms, ANNs being the most popular, have been tested using real WWTP data for that purpose. Comparisons among algorithms in different studies provide initially encouraging results.
- Soft sensors are becoming increasingly important in WWTP operation, with most recent applications (at any scale) involving soft sensors. Direct field application of soft sensors with AI control would provide more meaningful information than mere predictive-model-based sensors.
- Online hard sensors provide reliable information supporting WWTP operation, especially for the detection of faults or anomalies. A large number of data points at a high frequency is needed for building reliable data-driven AI models.
- AI applications for online image analysis (e.g., identification of biomass) and implementation of WWTPs’ DiTws requires further investigation.
- WWTP DiTw implementation, although very limited at the moment, is a promising research area that could generate tools to assist in facility revamping and optimization.
- Solutions should be designed with an understanding of the specific processes involved in WWTPs, along with improved data sharing.
- AI algorithm selection should take into account existing WWTP process knowledge; further field experience in AI application development is needed, especially requiring collaboration between wastewater engineers and operators and computer domain researchers.
- Online and soft sensors should be combined in online learning and training, allowing AI models to more efficiently interpret real-time data.
- AI imaging and olfactory analysis of biological and water quality parameters, biomass, and sludge should be developed to help optimize data gathering and, consequently, treatment processes operation and maintenance.
- Further study on water systems’ DTWs building and implementation is needed before they could become an operational tool.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Zheng, S.; Novotny, V.; Feng, X. Stochastic system identification of sewer-flow models. J. Environ. Eng. 1990, 116, 284–298. [Google Scholar] [CrossRef]
- Novotny, V.; Jones, H.; Feng, X.; Capodaglio, A. Time series analysis models of activated sludge plants. Water Sci. Technol. 1991, 23, 1107–1116. [Google Scholar] [CrossRef]
- Harremoes, P.; Capodaglio, A.G.; Hellstrom, B.G.; Otterpohl, R.; Soeberg, H. Wastewater treatment plants under transient loading- Performance, modelling and control. Water Sci. Technol. 1993, 27, 71–115. [Google Scholar] [CrossRef]
- Rossi, L.; Chèvre, N.; Fankhauser, R.; Krejci, V. Probabilistic environmental risk assessment of urban wet-weather discharges: An approach developed for Switzerland. Urban Water J. 2009, 6, 355–367. [Google Scholar] [CrossRef]
- Capodaglio, A.G. In-stream detection of waterborne priority pollutants, and applications in drinking water contaminant warning systems. Water Sci. Technol. 2017, 17, 707–725. [Google Scholar] [CrossRef]
- Kim, J.; Xin, X.; Mamo, B.T.; Hawkins, G.L.; Li, K.; Chen, Y.; Huang, K.; Huang, C.H. Occurrence and Fate of Ultrashort-Chain and Other Per- and Polyfluoroalkyl Substances (PFAS) in Wastewater Treatment Plants. ACS EST Water 2022, 2, 1380–1390. [Google Scholar] [CrossRef]
- Capodaglio, A.G. High-energy oxidation process: An efficient alternative for wastewater organic contaminants removal. Clean. Technol. Environ. Policy 2017, 19, 1995–2006. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Energy use and decarbonisation of the water sector: A comprehensive review of issues, approaches and technological options. Environ. Technol. Rev. 2025, 14, 40–68. [Google Scholar] [CrossRef]
- Zhang, S.; Jin, Y.; Chen, W.; Wang, J.; Wang, Y.; Ren, H. Artificial intelligence in wastewater treatment: A data-driven analysis of status and trends. Chemosphere 2023, 336, 139163. [Google Scholar] [CrossRef]
- Goldman Sachs. AI Is Poised to Drive 160% Increase in Data Center Power Demand. Available online: https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand (accessed on 30 August 2024).
- U.S. Department of Energy. The Water-Energy Nexus: Challenges and Opportunities; US DOE: Washington, DC, USA, 2014.
- NPR. Data Centers, Backbone of the Digital Economy, Face Water Scarcity and Climate Risk. Available online: https://www.npr.org/2022/08/30/1119938708/data-centers-backbone-of-the-digital-economy-face-water-scarcity-and-climate-ris (accessed on 30 August 2024).
- The University of Tulsa. Data Centers Draining Resources in Water-Stressed Communities. Available online: https://utulsa.edu/news/data-centers-draining-resources-in-water-stressed-communities/ (accessed on 28 December 2024).
- Statista. Leading Countries by Number of Data Centers as of March 2024. Available online: https://www.statista.com/statistics/1228433/data-centers-worldwide-by-country/ (accessed on 28 December 2024).
- Klipa, D.; Ristić, I.; Radonjić, A.; Scepanović, I. Big data and artificial intelligence. Int. J. Manag. Trends Key Concepts Res. 2022, 1, 3–14. [Google Scholar] [CrossRef]
- Alzahrani, A.I.A.; Chauhdary, S.H.; Alshdadi, A.A. Internet of Things (IoT)-Based Wastewater Management in Smart Cities. Electronics 2023, 12, 2590. [Google Scholar] [CrossRef]
- Aquatech. Tech Dive: The Rise of the Smart Pump. 2020. Available online: https://www.aquatechtrade.com/news/water-treatment/tech-dive-rise-of-the-smart-pump (accessed on 15 June 2023).
- Kotsiantis, S.B.; Zaharakis, I.D.; Pintelas, P.E. Machine learning: A review of classification and combining techniques. Artif. Intell. Rev. 2006, 26, 159–190. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.; Liu, H.; Guo, Q.; Dai, C.; Zhao, M.; Liu, D. A Review on Applications of Artificial Intelligence in Wastewater Treatment. Sustainability 2023, 15, 13557. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Urban Wastewater Mining for Circular Resource Recovery: Approaches and Technology Analysis. Water 2023, 15, 3967. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Energy and resources recovery from excess sewage sludge: A holistic analysis of opportunities and strategies. Resour. Conserv. Recycl. Adv. 2023, 19, 200184. [Google Scholar] [CrossRef]
- Nemcik, J.; Krupa, P.; Ozana, S.; Slanina, Z. Wastewater Treatment Modeling Methods Review. IFAC-PapersOnLine 2022, 55, 195–200. [Google Scholar] [CrossRef]
- Olsson, G. ICA and me—A subjective review. Water Res. 2012, 46, 1585–1624. [Google Scholar] [CrossRef]
- Yuan, Z.; Olsson, G.; Cardell-Oliver, R.; van Schagen, K.; Marchi, A.; Deletic, A.; Urich, K.; Rauch, W.; Liu, Y.; Jiang, G. Sweating the assets—The role of instrumentation, control and automation in urban water systems. Water Res. 2019, 155, 381–402. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G.; Jones, H.V.; Novotny, V.; Feng, X. Sludge bulking analysis and forecasting: Application of system identification and artificial neural computing technologies. Water Res. 1991, 25, 1217–1224. [Google Scholar] [CrossRef]
- Ráduly, B.; Gernaey, K.V.; Capodaglio, A.G.; Mikkelsen, P.S.; Henze, M. Artificial neural networks for rapid WWTP performance evaluation: Methodology and case study. Environ. Model. Softw. 2007, 22, 1208–1216. [Google Scholar] [CrossRef]
- Mehrani, M.J.; Bagherzadeh, F.; Zheng, M.; Kowal, P.; Sobotka, D.; Mąkinia, J. Application of a hybrid mechanistic/machine learning model for prediction of nitrous oxide (N2O) production in a nitrifying sequencing batch reactor. Process Saf. Environ. Prot. 2022, 162, 1015–1024. [Google Scholar] [CrossRef]
- Hazrati, H.; Moghaddam, A.H.; Rostamizadeh, M. The influence of hydraulic retention time on cake layer specifications in the membrane bioreactor: Experimental and artificial neural network modeling. J. Environ. Chem. Eng. 2017, 5, 3005–3013. [Google Scholar] [CrossRef]
- Khataee, A.R.; Kasiri, M.B. Artificial neural networks modeling of contaminated water treatment processes by homogeneous and heterogeneous nanocatalysis. J. Mol. Catal. A Chem. 2010, 331, 86–100. [Google Scholar] [CrossRef]
- Podder, M.S.; Majumder, C.B. The use of artificial neural network for modelling of phycoremediation of toxic elements As(III) and As(V) from wastewater using Botryococcus braunii. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 155, 130–145. [Google Scholar] [CrossRef]
- Bagherzadeh, F.; Nouri, A.S.; Mehrani, M.J.; Thennadil, S. Prediction of energy consumption and evaluation of affecting factors in a full-scale WWTP using a machine learning approach. Proc. Saf. Environ. Prot. 2021, 154, 458–466. [Google Scholar] [CrossRef]
- Bhagat, S.K.; Pilario, K.E.; Babalola, O.E.; Tiyasha, T.; Yaqub, M.; Onu, C.E.; Pyrgaki, K.; Falah, M.W.; Jawad, A.H.; Yaseen, D.A.; et al. Comprehensive review on machine learning methodologies for modeling dye removal processes in wastewater. J. Clean. Prod. 2023, 385, 135522. [Google Scholar] [CrossRef]
- Ye, Z.; Yang, J.; Zhong, N.; Tu, X.; Jia, J.; Wang, J. Tackling environmental challenges in pollution controls using artificial intelligence: A review. Sci. Total Environ. 2020, 699, 134279. [Google Scholar] [CrossRef]
- Oliveira, P.; Fernandes, B.; Aguiar, F.; Pereira, M.A.; Analide, C.; Novais, P. A Deep Learning Approach to Forecast the Influent Flow in Wastewater Treatment Plants. In Intelligent Data Engineering and Automated Learning—IDEAL 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 362–373. [Google Scholar]
- Arismendy, L.; Cardenas, C.; Gomez, D.; Maturana, A.; Mejia, R.; Quintero, M.C. Intelligent System for the Predictive Analysis of an Industrial Wastewater Treatment Process. Sustainability 2020, 12, 6348. [Google Scholar] [CrossRef]
- Deepnarain, N.; Nasr, M.; Kumari, S.; Stenström, T.A.; Reddy, P.; Pillay, K.; Bux, F. Artificial intelligence andmultivariate statistics for comprehensive assessment of filamentous bacteria in wastewater treatment plants experiencing sludge bulking. Environ. Technol. Innov. 2020, 19, 100853. [Google Scholar] [CrossRef]
- Karam, A.; Mostafa, M.; Elawwad, A.; Mahmoud, A.; Peters, R. Semi-Pilot Plant for Tertiary Treatment of Domestic Wastewater using Algal Photo-Bioreactor, with Artificial Intelligence. In Proceedings of the 2019 Annual AIChE Meeting, Orlando, FL, USA, 10–15 November 2019. [Google Scholar]
- Kern, P.; Wolf, C.; Gaida, D.; Bongards, M.; McLoone, S. COD and NH4-N estimation in the inflow of Wastewater Treatment Plants using Machine Learning Techniques. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), New Taipei, Taiwan, 18–22 August 2014; pp. 812–817. [Google Scholar]
- Mei, R.; Kim, J.; Wilson, F.P.; Bocher, B.T.W.; Liu, W.-T. Coupling growth kinetics modeling with machine learning reveals microbial immigration impacts and identifies key environmental parameters in a biological wastewater treatment process. Microbiome 2019, 7, 65. [Google Scholar] [CrossRef]
- Mercier, T.; Dembele, A.; Denoeux, T.; Blanc, P. Machine learning as a decision support tool for waste water treatment plant operation. Water Resour. Manag. X 2019, 229, 103–107. [Google Scholar]
- Newhart, K.B.; Marks, C.A.; Rauch-Williams, T.; Cath, T.Y.; Hering, A.S. Hybrid statistical-machine learning ammonia forecasting in continuous activated sludge treatment for improved process control. J. Water Process. Eng. 2020, 37, 101389. [Google Scholar] [CrossRef]
- Niu, G.; Yi, X.; Chen, C.; Li, X.; Han, D.; Yan, B.; Huang, M.; Ying, G. A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment. J. Clean. Prod. 2020, 265, 121787. [Google Scholar] [CrossRef]
- Oulebsir, R.; Lefkir, A.; Safri, A.; Bermad, A. Optimization of the energy consumption in activated sludge process using deep learning selective modeling. Biomass Bioenergy 2020, 132, 105420. [Google Scholar] [CrossRef]
- Zaghloul, M.S.; Achari, G. Application of machine learning techniques to model a full-scale wastewater treatment plant with biological nutrient removal. J. Environ. Chem. Eng. 2022, 10, 107430. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, J.; Wang, Q.; Huang, D. Prediction of filamentous sludge bulking using a state-based gaussian processes regression model. Sci. Rep. 2016, 6, 31303. [Google Scholar] [CrossRef]
- Shao, S.; Fu, D.; Yang, T.; Mu, H.; Gao, Q.; Zhang, Y. Analysis of Machine Learning Models for Wastewater Treatment Plant Sludge Output Prediction. Sustainability 2023, 15, 13380. [Google Scholar] [CrossRef]
- Khalil, M.; AlSayed, A.; Liu, Y.; Vanrolleghem, P.A. Machine learning for modeling N2O emissions from wastewater treatment plants: Aligning model performance, complexity, and interpretability. Water Res. 2023, 245, 120667. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, E.; Özbay, B.; Omurca, S.I.; Sayın, F.E.; Özbay, I. Application of machine learning algorithms and feature selection methods for better prediction of sludge production in a real advanced biological wastewater treatment plant. J. Environ. Manag. 2023, 348, 119448. [Google Scholar] [CrossRef] [PubMed]
- Minchala, L.I.; Peralta, J.; Mata-Quevedo, P.; Rojas, J. An Approach to Industrial Automation Based on Low-Cost Embedded Platforms and Open Software. Appl. Sci. 2020, 10, 4696. [Google Scholar] [CrossRef]
- Miller, M.; Kisiel, A.; Cembrowska-Lech, D.; Durlik, I.; Miller, T. IoT in Water Quality Monitoring-Are We Really Here? Sensors 2023, 23, 960. [Google Scholar] [CrossRef]
- Kumar, P.M.; Hong, C.S. Internet of things for secure surveillance for sewage wastewater treatment systems. Environ. Res. 2022, 203, 111899. [Google Scholar] [CrossRef]
- Revollar, S.; Vilanova, R.; Vega, P.; Francisco, M.; Meneses, M. Wastewater Treatment Plant Operation: Simple Control Schemes with a Holistic Perspective. Sustainability 2020, 12, 768. [Google Scholar] [CrossRef]
- Daneshgar, S.; Cecconet, D.; Capsoni, D.; Capodaglio, A.G. Side-Stream Phosphorus Recovery in Activated Sludge Processes. Water 2022, 14, 1861. [Google Scholar] [CrossRef]
- Copetti, D.; Marziali, L.; Viviano, G.; Valsecchi, L.; Guzzella, L.; Capodaglio, A.G.; Tartari, G.; Polesello, S.; Valsecchi, S.; Mezzanotte, V.; et al. Intensive monitoring of conventional and surrogate quality parameters in a highly urbanized river affected by multiple combined sewer overflows. Water Sci. Technol. Water Supp. 2019, 19, 953–966. [Google Scholar] [CrossRef]
- Viviano, G.; Valsecchi, S.; Polesello, S.; Capodaglio, A.; Tartari, G.; Salerno, F. Combined use of caffeine and turbidity to evaluate the impact of CSOs on river water quality. Water Air Soil. Policy 2017, 228, 330. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A.; Molognoni, D. Online monitoring of priority and dangerous pollutants in natural and urban waters: A state-of-the-art review. Manag. Environ. Qual. Int. J. 2016, 27, 507–536. [Google Scholar] [CrossRef]
- S::CAN. Wastewater Monitoring. Available online: https://www.s-can.at/en/ (accessed on 3 September 2024).
- Copetti, D.; Valsecchi, L.; Capodaglio, A.G.; Tartari, G. Direct measurement of nutrient concentrations in freshwaters with a miniaturized analytical probe: Evaluation and validation. Environ. Monit. Assess. 2017, 189, 144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Hu, J.; Pu, C. Intelligent management of carbon emissions of urban domestic sewage based on the Internet of Things. Environ. Res. 2024, 251, 118594. [Google Scholar] [CrossRef] [PubMed]
- Asadi, M.; McPhedran, K.N. Greenhouse gas emission estimation from municipal wastewater using a hybrid approach of generative adversarial network and data-driven modelling. Sci. Total Environ. 2021, 800, 149508. [Google Scholar] [CrossRef] [PubMed]
- Ali, J.; Najeeb, J.; Ali, M.A.; Aslam, M.F.; Raza, A. Biosensors: Their fundamentals, designs, types and most recent impactful applications: A review. J. Biosens. Bioelectron. 2017, 8, 1–9. [Google Scholar] [CrossRef]
- Bindu, A.; Bhadra, S.; Nayak, S.; Khan, R.; Prabhu, A.A.; Sevda, S. Bioelectrochemical biosensors for water quality assessment and wastewater monitoring. Open Life Sci. 2024, 19, 20220933. [Google Scholar] [CrossRef]
- Sevda, S.; Garlapati, V.K.; Naha, S.; Sharma, M.; Ray, S.G.; Sreekrishnan, T.R.; Goswami, P. Biosensing capabilities of bioelectrochemical systems towards sustainable water streams: Technological implications and future prospects. J. Biosci. Bioeng. 2020, 129, 647–656. [Google Scholar] [CrossRef]
- Shanbhag, M.M.; Manasa, G.; Mascarenhas, R.J.; Mondal, K.; Shetti, M.P. Fundamentals of bio-electrochemical sensing. Chem. Eng. J. Adv. 2023, 16, 100516. [Google Scholar] [CrossRef]
- Ejeian, F.; Etedali, P.; Mansouri-Tehrani, H.A.; Soozanipour, A.; Low, X.Z.; Asadnia, M.; Taheri-Kafrani, A.; Razmjou, A. Biosensors for wastewater monitoring: A review. Biosens. Bioelectron. 2018, 118, 66–79. [Google Scholar] [CrossRef]
- Zhang, W.; Tooker, N.B.; Mueller, A.V. Enabling wastewater treatment process automation: Leveraging innovations in real-time sensing, data analysis, and online controls. Environ. Sci. Water Res. Technol. 2020, 6, 2973–2992. [Google Scholar] [CrossRef]
- Li, C.; Guo, D.; Dang, Y.; Sun, D.; Li, P. Application of artificial intelligence-based methods in bioelectrochemical systems: Recent progress and future perspectives. J. Environ. Manag. 2023, 344, 118502. [Google Scholar] [CrossRef]
- Emaminejad, S.A.; Sparks, J.; Cusick, R.D. Integrating Bio-Electrochemical Sensors and Machine Learning to Predict the Efficacy of Biological Nutrient Removal Processes at Water Resource Recovery Facilities. Environ. Sci. Technol. 2023, 57, 18372–18381. [Google Scholar] [CrossRef] [PubMed]
- Voitechovič, E.; Pauliukaite, R. Electrochemical multisensor systems and arrays in the era of artificial intelligence. Curr. Opin. Electrochem. 2023, 42, 101411. [Google Scholar] [CrossRef]
- Ching, P.M.L.; So, R.H.Y.; Morck, T. Advances in soft sensors for wastewater treatment plants: A systematic review. J. Water Process. Eng. 2021, 44, 102367. [Google Scholar] [CrossRef]
- Wang, G.; Jia, Q.-S.; Zhou, M.; Bi, J.; Qiao, J.; Abusorrah, A. Artificial neural networks for water quality soft-sensing in wastewater treatment: A review. Artif. Intell. Rev. 2022, 55, 565–587. [Google Scholar] [CrossRef]
- Alvi, M.; Batstone, D.; Mbamba, C.K.; Keymer, P.; French, T.; Ward, A.; Dwyer, J.; Cardell-Oliver, R. Deep learning in wastewater treatment: A critical review. Water Res. 2023, 245, 120518. [Google Scholar] [CrossRef]
- Wu, J.; Pons, M.N.; Potier, O. Wastewater fingerprinting by UV-visible and synchronous fluorescence spectroscopy. Water Sci. Technol. 2006, 53, 449–456. [Google Scholar] [CrossRef]
- Martin, D.; Kü, N.; Satzger, G. Virtual Sensors. Bus. Inf. Syst. Eng. 2021, 63, 315–323. [Google Scholar] [CrossRef]
- Perera, Y.S.; Ratnaweera, D.A.A.C.; Dasanayaka, C.H.; Abeykoon, C. The role of artificial intelligence-driven soft sensors in advanced sustainable process industries: A critical review. Eng. Appl. Artif. Intell. 2023, 121, 105988. [Google Scholar] [CrossRef]
- Moretti, A.; Ivan, H.L.; Skvaril, J. A review of the state-of-the-art wastewater quality characterization and measurement technologies. Is the shift to real-time monitoring nowadays feasible? J. Water Process. Eng. 2024, 60, 105061. [Google Scholar] [CrossRef]
- Paepae, T.; Bokoro, P.N.; Kyamakya, K. From Fully Physical to Virtual Sensing for Water Quality Assessment: A Comprehensive Review of the Relevant State-of-the-Art. Sensors 2021, 21, 6971. [Google Scholar] [CrossRef]
- Harrison, J.W.; Lucius, M.A.; Farrell, J.L.; Eichler, L.W.; Relyea, R.A. Prediction of stream nitrogen and phosphorus concentrations from high-frequency sensors using Random Forests Regression. Sci. Total Environ. 2021, 763, 143005. [Google Scholar] [CrossRef] [PubMed]
- Pattnaik, B.S.; Pattanayak, A.S.; Udgata, S.K.; Panda, A.K. Machine learning based soft sensor model for BOD estimation using intelligence at edge. Complex. Intell. Syst. 2021, 7, 961–976. [Google Scholar] [CrossRef]
- Pattanayak, A.S.; Pattnaik, B.S.; Udgata, S.K.; Panda, A.K. Development of Chemical Oxygen on Demand (COD) Soft Sensor Using Edge Intelligence. IEEE Sens. J. 2020, 20, 14892–14902. [Google Scholar] [CrossRef]
- Castrillo, M.; García, Á.L. Estimation of high frequency nutrient concentrations from water quality surrogates using machine learning methods. Water Res. 2020, 172, 115490. [Google Scholar] [CrossRef]
- Szelag, B.; Drewnowski, J.; Lagod, G.; Majerek, D.; Dacewicz, E.; Fatone, F. Soft sensor application in identification of the activated sludge bulking considering the technological and economical aspects of smart systems functioning. Sensors 2020, 20, 1941. [Google Scholar] [CrossRef]
- Post, C.; Heyden, N.; Reinartz, A.; Foerderer, A.; Bruelisauer, S.; Linnemann, V.; Hug, W.; Amann, F. Possibilities of Real Time Monitoring of Micropollutants in Wastewater Using Laser-Induced Raman & Fluorescence Spectroscopy (LIRFS) and Artificial Intelligence (AI). Sensors 2022, 22, 4668. [Google Scholar] [CrossRef]
- Prudenza, S.; Panzitta, A.; Bax, C.; Capelli, L. Electronic Nose for Real-time Monitoring of Odour Emissions at a Wastewater Treatment Plant. Chem. Eng. Trans. 2022, 95, 169–174. [Google Scholar] [CrossRef]
- Łagód, G.; Duda, S.M.; Majerek, D.; Szutt, A.; Dołhańczuk-Śródka, A. Application of Electronic Nose for Evaluation of Wastewater Treatment Process Effects at Full-Scale WWTP. Processes 2019, 7, 251. [Google Scholar] [CrossRef]
- Piłat-Rożek, M.; Dziadosz, M.; Majerek, D.; Jaromin-Gleń, K.; Szeląg, B.; Guz, Ł.; Piotrowicz, A.; Łagód, G. Rapid Method of Wastewater Classification by Electronic Nose for Performance Evaluation of Bioreactors with Activated Sludge. Sensors 2023, 23, 8578. [Google Scholar] [CrossRef]
- Callegari, A.; Capodaglio, A.G. Effects of selected industrial pollutants on urban WWTPs activated sludge population, and possible mitigation strategies. Water Pract. Technol. 2017, 12, 619–637. [Google Scholar] [CrossRef]
- Khan, M.B.; Lee, X.Y.; Nisar, H.; Ng, C.A.; Yeap, K.H.; Malik, A.S. Digital Image Processing and Analysis for Activated Sludge Wastewater Treatment. In Signal and Image Analysis for Biomedical and Life Sciences; Sun, C., Bednarz, T., Pham, T., Vallotton, P., Wang, D., Eds.; Springer: Cham, Switzerland, 2015; Volume 823. [Google Scholar] [CrossRef]
- Satoh, H.; Kashimoto, Y.; Takahashi, N.; Tsujimura, T. Deep learning-based morphology classification of activated sludge flocs in wastewater treatment plants. Environ. Sci. Water Res. Technol. 2021, 7, 298–305. [Google Scholar] [CrossRef]
- Borzooei, S.; Scabini, L.; Miranda, G.; Daneshgar, S.; Deblieck, L.; Bruno, O.; De Langhe, P.; De Baets, B.; Nopens, I.; Torfs, E. Evaluation of activated sludge settling characteristics from microscopy images with deep convolutional neural networks and transfer learning. J. Water Process. Eng. 2024, 64, 105692. [Google Scholar] [CrossRef]
- Oruganti, R.K.; Biji, A.P.; Lanuyanger, T.; Show, P.L.; Sriariyanun, M.; Upadhyayula, V.K.K.; Gadhamshetty, V.; Bhattacharyya, D. Artificial intelligence and machine learning tools for high-performance microalgal wastewater treatment and algal biorefinery: A critical review. Sci. Total Environ. 2023, 876, 162797. [Google Scholar] [CrossRef] [PubMed]
- Kazemi, P.; Giralt, J.; Bengoa, C.; Masoumian, A.; Steyer, J.P. Fault detection and diagnosis in water resource recovery facilities using incremental PCA. Water Sci. Technol. 2020, 82, 2711–2724. [Google Scholar] [CrossRef]
- Tokos, A.; Micu, D.D.; Bartha, C.; Jipa, M.; Lingvay, I. SCADA Systems for Wastewater Treatment Plants. Electroteh. Electron. Autom. 2021, 69, 39–45. [Google Scholar]
- Sean, W.Y.; Chu, Y.Y.; Mallu, L.L.; Chen, J.G.; Liu, H.Y. Energy consumption analysis in wastewater treatment plants using simulation and SCADA system: Case study in northern Taiwan. J. Clean. Prod. 2020, 276, 124248. [Google Scholar] [CrossRef]
- Mamandipoor, B.; Majd, M.; Sheikhalishahi, S.; Modena, C.; Osmani, V. Monitoring and detecting faults in wastewater treatment plants using deep learning. Environ. Monit. Assess. 2020, 192, 148. [Google Scholar] [CrossRef]
- Elsayed, A.; Siam, A.; El-Dakhakhni, W. Machine learning classification algorithms for inadequate wastewater treatment risk mitigation. Proc. Saf. Environ. Prot. 2022, 159, 1224–1235. [Google Scholar] [CrossRef]
- Bellamoli, F.; Di Iorio, M.; Vian, M.; Melgani, F. Machine learning methods for anomaly classification in wastewater treatment plants. J. Environ. Manag. 2023, 344, 118594. [Google Scholar] [CrossRef]
- Salem, R.M.M.; Saraya, M.S.; Ali-Eldin, A.M.T. An Industrial Cloud-Based IoT System for Real-Time Monitoring and Controlling of Wastewater. IEEE Access 2022, 10, 6528–6540. [Google Scholar] [CrossRef]
- Yalçın, N.; Çakır, S.; Ünaldı, S. Attack Detection Using Artificial Intelligence Methods for SCADA Security. IEEE Internet Things J. 2024, 11, 39550–39559. [Google Scholar] [CrossRef]
- Solano, F.; Krause, S.; Wöllgens, C. An Internet-of-Things Enabled Smart System for Wastewater Monitoring. IEEE Access 2022, 10, 4666–4685. [Google Scholar] [CrossRef]
- Daneshgar, S.; Vanrolleghem, P.A.; Vaneeckhaute, C.; Buttafava, A.; Capodaglio, A.G. Optimization of P compounds recovery from aerobic sludge by chemical modeling and response surface methodology combination. Sci. Total Environ. 2019, 668, 668–677. [Google Scholar] [CrossRef] [PubMed]
- Cecconet, D.; Capodaglio, A.G. Sewage Sludge Biorefinery for Circular Economy. Sustainability 2022, 14, 14841. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Biorefinery of Sewage Sludge: Overview of Possible Value-Added Products and Applicable Process Technologies. Water 2023, 15, 1195. [Google Scholar] [CrossRef]
- Sucu, S.; van Schaik, M.O.; Esmeli, R.; Ouelhadj, D.; Holloway, T.; Williams, J.B.; Cruddas, P.; Martinson, P.B.; Chen, W.S.; Cappon, H.J. A conceptual framework for a multi-criteria decision support tool to select technologies for resource recovery from urban wastewater. J. Environ. Manag. 2021, 300, 113608. [Google Scholar] [CrossRef]
- Aniza, R.; Chen, W.S.; Pétrissans, A.; Hoang, A.T.; Ashokkumar, V.; Pétrissans, M. A review of biowaste remediation and valorization for environmental sustainability: Artificial intelligence approach. Environ. Pollut. 2023, 324, 121363. [Google Scholar] [CrossRef]
- Soo, A.; Gao, L.; Shon, H.K. Machine learning framework for wastewater circular economy—Towards smarter nutrient recoveries. Desalination 2024, 592, 118092. [Google Scholar] [CrossRef]
- Bolton, A.; Butler, L.; Dabson, I.; Enzer, M.; Evans, M.; Fenemore, T.; Harradence, F.; Keaney, E.; Kemp, A.; Luck, A.; et al. Gemini Principles; CDBB: Cambridge, UK, 2018. [Google Scholar] [CrossRef]
- Kreuzer, T.; Papapetrou, P.; Zdravkovic, J. Artificial intelligence in digital twins—A systematic literature review. Data Knowl. Eng. 2024, 151, 102304. [Google Scholar] [CrossRef]
- Karmous-Edwards, G.; Tomić, S.; Cooper, J.P. Developing a Unified Definition of Digital Twins. J. AWWA 2022, 114, 76–78. [Google Scholar] [CrossRef]
- Cooper, J.P.; Jackson, S.; Kamojjala, S.; Owens, G.; Szana, K.; Tomic, S. Demystifying Digital Twins: Definitions, Applications, and Benefits. J. AWWA 2022, 114, 58–75. [Google Scholar] [CrossRef]
- Torfs, E.; Nicolaï, N.; Daneshgar, S.; Copp, J.B.; Haimi, H.; Ikumi, D.; Johnson, B.; Plosz, B.B.; Snowling, S.; Townley, L.R.; et al. The transition of WRRF models to digital twin applications. Water Sci. Technol. 2022, 85, 2840–2853. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.J.; Li, H.; He, Z.; Tao, Y.; Wang, H.; Yang, M.; Savic, D.; Daigger, G.T.; Ren, N. Digital Twins for Wastewater Treatment: A Technical Review. Engineering 2024, 36, 21–35. [Google Scholar] [CrossRef]
- Daneshgar, S.; Polesel, F.; Borzooei, S.; Sørensen, H.R.; Peeters, R.; Weijers, S.; Nopens, I.; Torfs, E. A full-scale operational digital twin for a water resource recovery facility—A case study of Eindhoven Water Resource Recovery Facility. Water Environ. Res. 2024, 96, e11016. [Google Scholar] [CrossRef] [PubMed]
- Lumley, D.; Jursic Wanninger, D.; Magnusson, Å.; I’Ons, D.; Gustafsson, L.G. Implementing a digital twin for optimized real-time control of Gothenburg’s regional sewage system. Water Pract. Technol. 2024, 19, 657–670. [Google Scholar] [CrossRef]
- Plathottam, S.J.; Rzonca, A.; Lakhnori, R.; Iloeje, C.O. A review of artificial intelligence applications in manufacturing operations. J. Adv. Manuf. Process. 2023, 5, e10159. [Google Scholar] [CrossRef]
- Beder, S. Technological Paradigms: The Case of Sewerage Engineering. Technol. Stud. 1997, 4, 167–188. [Google Scholar]
- World Bank. Water Can’t Wait: Accelerating the Adoption of Innovations in Water Security. Available online: https://blogs.worldbank.org/en/water/water-cant-wait-accelerating-adoption-innovations-water-security#:~:text=The%20sector%20has%20historically%20been,testing%2C%20and%20deploying%20new%20technologies (accessed on 26 October 2024).
- Cornelissen, R.; Van Dyck, T.; Dries, J.; Ockier, P.; Smets, I.; Van den Broeck, R.; Van Hulle, R.; Feyaerts, M. Application of online instrumentation in industrial wastewater treatment plants—A survey in Flanders, Belgium. Water Sci. Technol. 2018, 78, 4. [Google Scholar] [CrossRef]
- Rapp, A.H.; Capener, A.M.; Sowby, R.B. Adoption of Artificial Intelligence in Drinking Water Operations: A Survey of Progress in the United States. J. Water Resour. Plan. Manag. 2023, 149, 7. [Google Scholar] [CrossRef]
- Eerikäinen, S.; Haimi, H.; Mikola, A.; Vahala, R. Data analytics in control and operation of municipal wastewater treatment plants: Qualitative analysis of needs and barriers. Water Sci. Technol. 2020, 82, 2681–2690. [Google Scholar] [CrossRef]
AI Algorithm Type | Characteristics | Limitations |
---|---|---|
Artificial neural network (ANN) | One of the most commonly used AI methods. Simple topology, black-box-type model. Suitable for large-scale complex problems. | Large amounts of training data required. |
Genetic programming (GP) | Strong robustness, global optimization search. Straightforward application. Absence of preliminary assumptions on model structure. | High computational density and continuous optimization during the prediction process required. Limited adaptability for continuous prediction. May be subject to premature convergence. |
Fuzzy logic (FL) | Simple reasoning process. Simulates human thinking. | Fuzzy rules may compromise prediction. It may struggle to understand complex dynamic of biological processes. |
Support vector regression (SVR) | Simplified modelling process. High prediction precision if input data properly screened. | Prone to inaccurate results if not optimized to input data. Requires parameter adjustment. |
Particle swarm optimization (PSO) | Imitates the swarm behavior of biological populations (e.g., birds, fish) by constantly adjusting individual position and velocity in search of the optimal solutions. Can deal with complex nonlinear problems and avoid falling into local solutions. | Sensitive to initial conditions. Requires multiple runs to obtain good results. |
Random forest (RF) | Used in classification and regression problems. Multiple decision trees (DTs) are trained on a random subset drawn from the original dataset. | Sensitive to noise and outliers. Requires more computing time and resources to train. |
Self-organizing map (SOM) | ML algorithm for clustering and dimensionality reduction of complex datasets in a low-dimensional mapping space, making it easier to visualize and classify data points. | |
K-nearest neighbor (KNN) | Able to deal with complex I/O nonlinear relationships, adaptively adjusting model complexity to various data types using different distance measurements. | Sensitive to dataset dimensions and noise. Computationally expensive. |
Adaptive neural fuzzy inference system (ANFIS) | Combine ANN learning mechanism and FL linguistic reasoning capacity. | Single output type. Requires deep understanding of the system to be modelled. |
Application | Input | Output | Technique | Ref. |
---|---|---|---|---|
Municipal WWTP influent | Q; T; Patm; air humidity; wind speed and direction; rainfall; cloudiness | Influent flow 3 days in advance | LSTM, CNN | [37] |
Municipal WWTP influent | Q; CODIN; SSIN; MLSS; MLVSS; NIN; pH; DO; F/M | Next day COD effluent | MLP | [38] |
Multiple WWTPs | Filamentous species (10 types) | SVI | ANN | [39] |
Algal PBR with lamella settler | HRT; Q; MLSS | BODEFF, CODEFF, TSSEFF, NH4-NEFF, TPEFF | ANN | [40] |
Municipal WWTP influent | Turbidity; SAC (254 and 433 nm); conductivity; T, Q; pH | CODIN, NH4-NIN | RF; SVM; LDA; SV; MLP | [41] |
UASB followed by CAS | Microbial taxonomic units | TOC; DO; effluent NH4-N, PO4-P | LM | [42] |
Municipal WWTP | Q; influent BOD5, COD, N, TSS, P, T; rainfall; sunlight irradiation | Aeration timing | PCA, BT, LM | [43] |
Municipal WWTP | Q, NH4-Nin, QR | NH4-NEFF | Hybrid LM-ANN | [44] |
Industrial WWTP | Influent Q, pH, T, DO, COD, SS | Effluent COD, TSS | DBN; GA; hybrid GA-DBN | [45] |
Municipal WWTP | T; QR; Q | Energy consumption | DNN | [46] |
Municipal WWTP | DO; COD; Q; MLSS; SVI; T | Filamentous bulking | GPR | [47] |
Municipal WWTP | Influent Q; MLVSS; OLR; SVI; HRT; RAS TSS; T; pH; WAS TSS; PE TSS; SE TSS; SE TP; BOD5; TKN; TP; NH4-N; COD; TN; MLSS | Effluent Q; MLVSS; OLR; SVI; HRT; RAS TSS; T; pH; WAS TSS; PE TSS; SE TSS; SE TP; BOD5; TKN; TP; NH4-N; COD; TN; MLSS | ANN, SVR, ANFIS, E-ANN, E-SVR, E-ANFIS, E-AVG, E-WAVG | [48] |
Municipal WWTP | Influent Q; MLVSS; OLR; SVI; HRT; RAS TSS; T; pH; WAS TSS; PE TSS; SE TSS; SE TP; BOD5; TKN; TP; NH4-N; COD; TN; MLSS; rainfall | Sludge production | LR, KRR, DT, SVR, KNN, FCNN, RF, XGBoost | [49] |
Municipal WWTP | Q; NH4-N; NO3-N; NO2-N; DO, TSS, T | N2O emissions | KNN; DT; RF; DNN; XGBoost; ADABoost, | [50] |
Determination Method | Parameter | Notes |
---|---|---|
UV–VIS spectrometry over total wavelength range 190–750 nm | TSS, TS, turbidity, color, TOC, DOC, BOD, COD, NO3-N, NO3, chloramine, HS−, O3, Chl-a, BTX, UV254, chlordecone | All parameters can be determined with fast measurement intervals (every 30 s or less) Local multipoint calibration possible according to matrix characteristics Long-term stable operation without chemical dosage |
UV–VIS spectrometry over total wavelength range 200–390 nm | NO3-N, COD, BOD, TOC, UV254, NO2-N, BTX | |
Amperometric (internal buffer 3-electrode system) | Free/total chlorine | pH range from 4 to 10+ |
Amperometric (membrane covered) | Peracetic acid, hydrogen peroxide, chloride dioxide | |
Reference electrode | pH | |
ISE (ion-selective electrodes) (with optional potassium compensation) | NH4-N, NO3-N | ISE lifetime: typically 6 month (applications < 1 mg/L NH4-N), 1–2 years (applications > 1 mg/L NH4-N) |
Optical/fluorescence | D.O. | No consumables |
Electrode | Conductivity | |
Reference electrode | ORP | |
Analytical process miniaturization | Dissolved reactive phosphorus, total phosphorus, N-NH4 | Consumables replacement needed |
Input Variables a | Output(s) a | Techniques b | Ref. |
---|---|---|---|
EC, pH, ToD, fDOM, HP, Temp, Turb, SM | TP, TN | RF | [81] |
DO, Turb, pH, Temp, ORP, EC | BOD | MLR, MLP, SVM-SMO, IBK, RF | [82] |
DO, Temp, TSS, NH3, pH, TOC, Turb | COD | MLR, MLP, SVM, RF, kNN | [83] |
EC, Turb, Temp, DO, pH, Chl-a, Q | TP, TN | RF | [84] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capodaglio, A.G.; Callegari, A. Use, Potential, Needs, and Limits of AI in Wastewater Treatment Applications. Water 2025, 17, 170. https://doi.org/10.3390/w17020170
Capodaglio AG, Callegari A. Use, Potential, Needs, and Limits of AI in Wastewater Treatment Applications. Water. 2025; 17(2):170. https://doi.org/10.3390/w17020170
Chicago/Turabian StyleCapodaglio, Andrea G., and Arianna Callegari. 2025. "Use, Potential, Needs, and Limits of AI in Wastewater Treatment Applications" Water 17, no. 2: 170. https://doi.org/10.3390/w17020170
APA StyleCapodaglio, A. G., & Callegari, A. (2025). Use, Potential, Needs, and Limits of AI in Wastewater Treatment Applications. Water, 17(2), 170. https://doi.org/10.3390/w17020170