Analysis of Glacial Morphological Characteristics in Ányêmaqên Mountains Using Multi-Source Time-Series High-Resolution Remote Sensing Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Utilization of Time-Series Multisource Remote Sensing Imagery in the Study Area
2.3. Methods
2.3.1. Processing of Multi-Temporal Remote Sensing Imagery and Visual Interpretation
2.3.2. Deep Learning-Based Intelligent Interpretation of Glacier Boundaries in the Ányêmaqên Mountain Region
2.3.3. Accuracy Evaluation Metrics
Glacier Interpretation Accuracy Metrics
Deep Learning Performance Metrics
Glacier Change Accuracy Metrics
3. Results
3.1. Glacier Boundary Delineation Data Preprocessing
3.1.1. Glacier Boundary Preprocessing: Band Ratios and Manual Delineation
3.1.2. Subsubsection Deep Learning Model Input Preparation for Glacier Boundary Delineation
3.2. Accuracy Analysis
3.2.1. Accuracy Assessment of Band Ratio/Manual Delineation
3.2.2. Accuracy Assessment of the Deep Learning Model
3.3. Deep Learning Implementation and Results
4. Discussion
4.1. Glacier Area and Changes Across Different Periods
4.2. Development of Glacial Hazards
4.3. Glacial Collapse Chain Disasters at the Maqên Gangri Glacier, Xiaoma Valley
4.4. Limitations and Uncertainty Analysis
4.5. Implications for Risk Assessment and Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, B.; Guan, W.; Shi, M.; Wu, G.; Cheng, J.; Shangguan, D.; Guo, W.; Cao, B. Different characteristics of two surges in Weigeledangxiong Glacier, northeastern Tibetan Plateau. Environ. Res. Lett. 2022, 17, 114009. [Google Scholar] [CrossRef]
- Liu, S.Y.; Yao, X.J.; Guo, W.Q.; XU, J.L.; Shangguan, D.H.; Wei, J.F.; Bao, W.J.; Wu, L.Z. The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geogr. Sin. 2015, 70, 3–16. [Google Scholar] [CrossRef]
- Wang, X.; Siegert, F.; Zhou, A.; Franke, J. Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972–2010. Glob. Planet. Change 2013, 111, 246–257. [Google Scholar] [CrossRef]
- Ke, L.; Ding, X.; Li, W.; Qiu, B. Remote Sensing of Glacier Change in the Central Qinghai-Tibet Plateau and the Relationship with Changing Climate. Remote Sens. 2017, 9, 114. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, G.; Wang, X.; Liu, Q.; Zhang, R.; Jia, H. Assessing the Glacier Boundaries in the Qinghai-Tibetan Plateau of China by Multi-Temporal Coherence Estimation with Sentinel-1A InSAR. Remote Sens. 2019, 11, 392. [Google Scholar] [CrossRef]
- Hugonnet, R.; McNabb, R.; Berthier, É.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Li, J.; Sun, M.; Yao, X.; Duan, H.; Zhang, C.; Wang, S.; Niu, S.; Yan, X. A review of Karakoram glacier anomalies in High Mountains Asia. Water 2023, 15, 3215. [Google Scholar] [CrossRef]
- Bhambri, R.; Hewitt, K.; Kawishwar, P.; Pratap, B. Surge-type and surge-modified glaciers in the Karakoram. Sci. Rep. 2017, 7, 15391. [Google Scholar] [CrossRef]
- Copland, L.; Sylvestre, T.; Bishop, M.P.; Shroder, J.F.; Seong, Y.B.; Owen, L.A.; Bush, A.B.G.; Kamp, U. Expanded and recently increased glacier surging in the Karakoram. Arct. Antarct. Alp. Res. 2011, 43, 503–516. [Google Scholar] [CrossRef]
- Goerlich, F.; Bolch, T.; Paul, F. More dynamic than expected: An updated survey of surging glaciers in the Pamir. Earth Syst. Sci. Data 2020, 12, 3161–3176. [Google Scholar] [CrossRef]
- Lv, M.L.M.; Guo, H.G.H.; Yan, S.Y.S.; Li, G.L.G.; Di Jiang, D.J.; Zhang, H.Z.H.; Zhang, Z.Z.Z. A dataset of surge-type glaciers in the High Mountain Asia based on elevation change and satellite imagery. Sci. Data Bank Datasets 2022. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.; Yi, Y.S.; Zhang, Z.; Chao, S. Long Time-Series glacier outlines in the Three-Rivers headwater region from 1986 to 2021 based on deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 5734–5752. [Google Scholar] [CrossRef]
- Yang, X.; Xie, F.; Liu, S.; Zhu, Y.; Fan, J.; Zhao, H.; Fu, Y.; Duan, Y.; Fu, R.; Guo, S. Mapping Debris-Covered glaciers using High-Resolution Imagery (GF-2) and deep learning algorithms. Remote Sens. 2024, 16, 2062. [Google Scholar] [CrossRef]
- Davari, A.; Baller, C.; Seehaus, T.; Braun, M.; Maier, A.; Christlein, V. Pixelwise distance regression for glacier calving front detection and segmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5224610. [Google Scholar] [CrossRef]
- Zhang, E.; Liu, L.; Huang, L.; Ng, K.S. An automated, generalized, deep-learning-based method for delineating the calving fronts of Greenland glaciers from multi-sensor remote sensing imagery. Remote Sens. Environ. 2020, 254, 112265. [Google Scholar] [CrossRef]
- Peng, Y.; He, J.; Yuan, Q.; Wang, S.; Chu, X.; Zhang, L. Automated glacier extraction using a Transformer based deep learning approach from multi-sensor remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2023, 202, 303–313. [Google Scholar] [CrossRef]
- Wang, Q.; Li, B.; Xing, A.; Liu, Y.; Zhuang, Y. A 15-year history of repeated ice-rock avalanches from a single source area in the Qinghai-Tibet Plateau. Landslides 2024, 22, 235–253. [Google Scholar] [CrossRef]
- An, B.S.; Wang, W.C.; Yang, W.; Wu, G.J.; Guo, Y.H.; Zhu, H.F.; Gao, Y.; Bai, L.; Zhang, F.; Zeng, C.; et al. Process, mechanisms, and early warning of glacier collapse-induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern Tibetan Plateau. Sci. Total Environ. 2021, 816, 151652. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, V.; Van Wyk De Vries, M.; Haritashya, U.K.; Garg, S.; Kargel, J.S.; Chen, Y.; Shugar, D.H. Long-term analysis of glaciers and glacier lakes in the Central and Eastern Himalaya. Sci. Total Environ. 2023, 898, 165598. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Siddiquee, M.R.; Tajbakhsh, N.; Liang, J. UNET++: A nested U-Net architecture for medical image segmentation. arXiv 2018, arXiv:1807.10165. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SEGNet: A deep convolutional Encoder-Decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In Lecture Notes in Computer Science; Springer Science and Business Media: Berlin, Germany, 2018; pp. 833–851. [Google Scholar] [CrossRef]
- Li, Z.F.; Zhou, B.G. Assessment of Strong Earthquake Risk in Maqin–Maqu Segment of the Eastern Kunlun Fault, Northeast Tibet Plateau. Appl. Sci. 2024, 14, 2691. [Google Scholar] [CrossRef]
- Guo, S.; Du, P.; Xia, J.; Tang, P.; Wang, X.; Meng, Y.; Wang, H. Spatiotemporal changes of glacier and seasonal snow fluctuations over the Namcha Barwa–Gyala Peri massif using object-based classification from Landsat time series. ISPRS J. Photogramm. Remote Sens. 2021, 177, 21–37. [Google Scholar] [CrossRef]
- Li, B.; Xie, H.; Tong, X.; Cai, Y.; Zhang, Z. Research on the control point extraction method of Chinese Gaofen 7 satellite using altimeter and footprint camera. EPJ Web Conf. 2020, 237, 01016. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, J.; Guo, S.; Zhang, Y.; Zhang, Z. High precision water quality retrieval in Dianchi Lake using Gaofen 5 data and machine learning methods. Sci. Rep. 2025, 15, 6760. [Google Scholar] [CrossRef]
- Qian, H.; Bao, N.; Meng, D.; Zhou, B.; Lei, H.; Li, H. Mapping and classification of Liao River Delta coastal wetland based on time series and multi-source GaoFen images using stacking ensemble model. Ecol. Inform. 2024, 80, 102488. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, S.; Zhang, C.; Wang, B. Hidden Feature-Guided semantic segmentation network for remote sensing images. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5603417. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Guo, H.; Yi, L.; Zeng, J.; Li, B. Glacial Lake Area Changes in High Mountain Asia during 1990–2020 Using Satellite Remote Sensing. Research 2022, 2022, 9821275. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, M.; Tian, B.; Li, Z. Extraction of glacial lake outlines in Tibet Plateau using Landsat 8 imagery and Google Earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4002–4009. [Google Scholar] [CrossRef]
- Kaushik, S.; Singh, T.; Joshi, P.; Dietz, A.J. Automated mapping of glacial lakes using multisource remote sensing data and deep convolutional neural network. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103085. [Google Scholar] [CrossRef]
- Yang, S.; Wang, F.; Xie, Y.; Zhao, W.; Bai, C.; Liu, J.; Xu, C. Delineation evaluation and variation of Debris-Covered glaciers based on the Multi-Source remote sensing images, take glaciers in the eastern Tomur Peak region for example. Remote Sens. 2023, 15, 2575. [Google Scholar] [CrossRef]
- Tielidze, L.G.; Iacob, G.; Holobâcă, I.H. Mapping of Supra-Glacial debris cover in the Greater Caucasus: A Semi-Automated Multi-Sensor approach. Geosciences 2024, 14, 178. [Google Scholar] [CrossRef]
- Golom, T.; Bandyopadhyay, A.; Bhadra, A. Development and testing of a glacier mass balance model using VB.NET to simulate glacier surface area for Himalayan glaciers. Environ. Model. Assess. 2024, 30, 157–176. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Q.; Liu, G.; Zhang, L.; Guo, Z.; Tong, L.; Peng, J.; Yuan, W.; Zhou, W.; Yan, J.; et al. Monitoring and analyzing mountain glacier surface movement using SAR data and a terrestrial laser scanner: A case study of the Himalayas North Slope Glacier area. Remote Sens. 2019, 11, 625. [Google Scholar] [CrossRef]
- Tulbure, A.; Tulbure, A.; Dulf, E. A review on modern defect detection models using DCNNs—Deep convolutional neural networks. J. Adv. Res. 2021, 35, 33–48. [Google Scholar] [CrossRef]
- Maslov, K.A.; Persello, C.; Schellenberger, T.; Stein, A. Globally scalable glacier mapping by deep learning matches expert delineation accuracy. Nat. Commun. 2025, 16, 43. [Google Scholar] [CrossRef]
- Jiang, D.; Li, S.; Hajnsek, I.; Siddique, M.A.; Hong, W.; Wu, Y. Glacial lake mapping using remote sensing Geo-Foundation Model. Int. J. Appl. Earth Obs. Geoinf. 2025, 136, 104371. [Google Scholar] [CrossRef]
- Barzycka, B.; Grabiec, M.; Błaszczyk, M.; Ignatiuk, D.; Laska, M.; Hagen, J.O.; Jania, J. Changes of glacier facies on Hornsund glaciers (Svalbard) during the decade 2007–2017. Remote Sens. Environ. 2020, 251, 112060. [Google Scholar] [CrossRef]
- Pletzer, T.; Conway, J.P.; Cullen, N.J.; Eidhammer, T.; Katurji, M. The application and modification of WRF-Hydro/Glacier to a cold-based Antarctic glacier. Hydrol. Earth Syst. Sci. 2024, 28, 459–478. [Google Scholar] [CrossRef]
- Afzal, M.M.; Wang, X.; Luo, Y. Large glaciers sustaining the Upper Indus basin glacier runoff in the future. J. Hydrol. 2025, 657, 132952. [Google Scholar] [CrossRef]
- Singh, V.; Jain, S.K.; Shukla, S. Glacier change and glacier runoff variation in the Himalayan Baspa river basin. J. Hydrol. 2020, 593, 125918. [Google Scholar] [CrossRef]
- Robson, B.A.; Bolch, T.; MacDonell, S.; Hölbling, D.; Rastner, P.; Schaffer, N. Automated detection of rock glaciers using deep learning and object-based image analysis. Remote Sens. Environ. 2020, 250, 112033. [Google Scholar] [CrossRef]
- Heidler, K.; Mou, L.; Loebel, E.; Scheinert, M.; Lefèvre, S.; Zhu, X.X. A deep active contour model for delineating glacier calving fronts. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5615912. [Google Scholar] [CrossRef]
- Liu-Schiaffini, M.; Ng, G.; Grima, C.; Young, D. Ice thickness from deep learning and conditional random fields: Application to Ice-Penetrating radar data with radiometric validation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5119014. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L. Changes in the ablation zones of glaciers in the western Himalaya and the Karakoram between 1972 and 2015. Remote Sens. Environ. 2016, 187, 505–512. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Nuimura, T.; Yamaguchi, S.; Sharma, R.R. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery. Environ. Res. Lett. 2009, 4, 045205. [Google Scholar] [CrossRef]
- Mir, R.A.; Jain, S.K.; Lohani, A.; Saraf, A.K. Glacier recession and glacial lake outburst flood studies in Zanskar basin, western Himalaya. J. Hydrol. 2018, 564, 376–396. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Wei, J.; Jiang, Z.; Zhang, Y.; Liu, S. Spatiotemporal variability of glacier changes and their controlling factors in the Kanchenjunga region, Himalaya based on multi-source remote sensing data from 1975 to 2015. Sci. Total Environ. 2020, 745, 140995. [Google Scholar] [CrossRef]
- Su, P.; Liu, J.; Li, Y.; Liu, W.; Wang, Y.; Ma, C.; Li, Q. Changes in glacial lakes in the Poiqu River basin in the central Himalayas. Hydrol. Earth Syst. Sci. 2021, 25, 5879–5903. [Google Scholar] [CrossRef]
- Nie, Y.; Pritchard, H.D.; Liu, Q.; Hennig, T.; Wang, W.; Wang, X.; Liu, S.; Nepal, S.; Samyn, D.; Hewitt, K.; et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2021, 2, 91–106. [Google Scholar] [CrossRef]
- Rounce, D.R.; McKinney, D.C.; Lala, J.M.; Byers, A.C.; Watson, C.S. A new remote hazard and risk assessment framework for glacial lakes in the Nepal Himalaya. Hydrol. Earth Syst. Sci. 2016, 20, 3455–3475. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Tian, L.; Sheng, Y.; Liao, J.; Zhao, H.; Yang, W.; Yang, K.; Berthier, E.; Brun, F.; et al. Response of downstream lakes to Aru glacier collapses on the western Tibetan Plateau. Cryosphere 2021, 15, 199–214. [Google Scholar] [CrossRef]
- Li, D.; Shangguan, D.; Wang, X.; Ding, Y.; Su, P.; Liu, R.; Wang, M. Expansion and hazard risk assessment of glacial lake Jialong Co in the central Himalayas by using an unmanned surface vessel and remote sensing. Sci. Total Environ. 2021, 784, 147249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Yin, Y.; Li, B.; Liu, X.; Wang, M.; Gao, Y.; Wan, J.; Gnyawali, K.R. Characteristics and dynamic analysis of the February 2021 long-runout disaster chain triggered by massive rock and ice avalanche at Chamoli, Indian Himalaya. J. Rock Mech. Geotech. Eng. 2022, 15, 296–308. [Google Scholar] [CrossRef]
- Wang, W.; Nie, Y.; Zhang, H.; Wang, J.; Deng, Q.; Liu, L.; Liu, F.; Zhang, S.; Lyu, Q.; Zhang, L. A generic framework for glacial lake outburst flood investigation: A case study of Zalai Tsho, Southeast Tibet. Catena 2023, 234, 107614. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Shen, Z.; Zhan, N.; Wang, Z.; An, B. Understanding the 2004 glacier detachment in the Amney Machen Mountains, northeastern Tibetan Plateau, via multi-phase modeling. Landslides 2022, 20, 315–330. [Google Scholar] [CrossRef]
- Tewari, N.K.; Misra, A.K. Landslide vulnerability assessment in Gangotri valley glacier Himalaya through GIS and remote sensing techniques. Appl. Water Sci. 2019, 9, 115. [Google Scholar] [CrossRef]
- Medeu, A.R.; Popov, N.V.; Blagovechshenskiy, V.P.; Askarova, M.A.; Medeu, A.A.; Ranova, S.U.; Kamalbekova, A.; Bolch, T. Moraine-dammed glacial lakes and threat of glacial debris flows in South-East Kazakhstan. Earth-Sci. Rev. 2022, 229, 103999. [Google Scholar] [CrossRef]
- Patton, H.; Hubbard, A.; Heyman, J.; Alexandropoulou, N.; Lasabuda, A.P.E.; Stroeven, A.P.; Hall, A.M.; Winsborrow, M.; Sugden, D.E.; Kleman, J.; et al. The extreme yet transient nature of glacial erosion. Nat. Commun. 2022, 13, 7377. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Gao, T.; An, B.; Yao, T. An integrative method for identifying potentially dangerous glacial lakes in the Himalayas. Sci. Total Environ. 2021, 806, 150442. [Google Scholar] [CrossRef]
- Sharma, A.; Prakash, C. Glacial lakes mapping using satellite images and deep learning algorithms in Northwestern Indian Himalayas. Model. Earth Syst. Environ. 2023, 10, 2063–2077. [Google Scholar] [CrossRef]
- Wells, A.; Tober, B.S.; Child, S.F.; Rounce, D.R.; Loso, M.G.; Hults, C.P.; Truffer, M.; Holt, J.W.; Christoffersen, M.S. An 85-year record of glacier change and refined projections for Kennicott and Root Glaciers, Alaska. Nat. Commun. 2025, 16, 7835. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shangguan, D.; Li, D.; Li, Y.; Wang, R.; He, R.; Butt, A.Q. Glacial hazards change in Xinjiang over the past seven decades: Spatiotemporal patterns and trends. Quat. Sci. Rev. 2025, 351, 109183. [Google Scholar] [CrossRef]
Data Source | Sensor Type | Revisit Period (Days) | Number of Bands | Spatial Resolution | Scene Count (Scene) | Data Timeliness (Year) | Spatial Coverage (%) | |
---|---|---|---|---|---|---|---|---|
Panchromatic Band | Multispectral Bands | |||||||
GF-1 | PMS/WFV | 4 | 4 | 2 m | 8.0 m | 4 | 2014, 2023, 2024 | 100% |
GF1B/C/D | PMS | 4 | 4 | 2 m | 8.0 m | 6 | 2020, 2021, 2022 | 100% |
GF2 | PMS | 5 | 4 | 0.8 m | 3.2 m | 4 | 2015, 2017 | 100% |
GF6 | PMS/WFV | 4 | 4 | 2 m | 8.0 m | 5 | 2019 | 100% |
ZY3-02A | NAD/MUX | 5 | 4 | 2.1 m | 5.8 m | 5 | 2016, 2018 | 100% |
ZY1-02C | PMS/HRC | 3 | 4 | 2.3 m | 5.0 m | 6 | 2013 | 100% |
DEM | - | - | 12.5 m | - | 2011 | 100% | ||
Glacier Inventory Compilation | - | - | - | - | 2007 | 100% |
Year | (2009) | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Glacier Count (individual) | 74 | 80 | 80 | 81 | 82 | 82 | 83 | 84 | 85 | 84 | 84 | 85 | 86 |
Relative Area Change (km2) | 0.00 | 6.00 | 0.00 | 1.00 | 1.00 | 0.00 | 1.00 | 1.00 | 1.00 | −1.00 | 0.00 | 1.00 | 1.00 |
Mean Annual Change Rate (%) | 0.00 | 8.11 | 0.00 | 1.25 | 1.23 | 0.00 | 1.22 | 1.20 | 1.19 | −1.18 | 0.00 | 1.19 | 1.18 |
Glaciated Area (km2) | 102.71 | 98.46 | 98.31 | 94.64 | 91.63 | 91.79 | 91.01 | 90.71 | 87.33 | 86.98 | 86.26 | 81.20 | 81.10 |
Annual Net Change (km2) | 0.00 | −4.25 | −0.15 | −3.67 | −3.01 | 0.16 | −0.78 | −0.30 | −3.38 | −0.35 | −0.72 | −5.06 | −0.10 |
Change Rate (%) | 0.00 | −4.14 | −0.15 | −3.73 | −3.18 | 0.17 | −0.85 | −0.33 | −3.73 | −0.40 | −0.83 | −5.87 | −0.12 |
Area (km2) | Observation Year | Mean Elevation Range (m) | ||||||
---|---|---|---|---|---|---|---|---|
<5100 | 5100–5200 | 5200–5300 | 5300–5400 | 5400–5500 | 5500–5600 | >5600 | ||
Glaciers in the Ányêmaqên Mountains | 2009 | 1.4 | 24.9 | 35.2 | 1.7 | 28 | 6.1 | 5.4 |
2013 | 0.67 | 5.13 | 51.25 | 2.3 | 27.83 | 5.98 | 5.3 | |
2014 | 0.64 | 5.11 | 51.88 | 2.02 | 27.66 | 5.93 | 5.07 | |
2015 | 0.42 | 4.65 | 50.85 | 1.71 | 26.41 | 5.63 | 4.97 | |
2016 | 0.53 | 4.02 | 50.15 | 1.65 | 25.01 | 5.41 | 4.86 | |
2017 | 0.53 | 4.17 | 50.1 | 1.65 | 25.02 | 5.42 | 4.9 | |
2018 | 0.61 | 4.31 | 49.46 | 1.73 | 24.70 | 5.99 | 4.21 | |
2019 | 0.57 | 5.54 | 49.65 | 2.29 | 23.44 | 4.59 | 4.63 | |
2020 | 0.45 | 3.45 | 49.46 | 1.55 | 22.71 | 5.04 | 4.67 | |
2021 | 0.02 | 3.53 | 48.96 | 1.99 | 22.49 | 4.85 | 5.14 | |
2022 | 0.3 | 3.27 | 49.02 | 1.37 | 21.38 | 4.99 | 5.93 | |
2023 | 0.27 | 3.01 | 48.34 | 1.87 | 17.29 | 5.25 | 5.17 | |
2024 | 0.25 | 3.01 | 48.04 | 1.96 | 17.32 | 5.25 | 5.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Chen, G.; Wu, X.; Li, D.; Mao, Y.; Zhang, X. Analysis of Glacial Morphological Characteristics in Ányêmaqên Mountains Using Multi-Source Time-Series High-Resolution Remote Sensing Imagery. Water 2025, 17, 2749. https://doi.org/10.3390/w17182749
Xu W, Chen G, Wu X, Li D, Mao Y, Zhang X. Analysis of Glacial Morphological Characteristics in Ányêmaqên Mountains Using Multi-Source Time-Series High-Resolution Remote Sensing Imagery. Water. 2025; 17(18):2749. https://doi.org/10.3390/w17182749
Chicago/Turabian StyleXu, Wei, Gang Chen, Xiaotian Wu, Delin Li, Yuhui Mao, and Xin Zhang. 2025. "Analysis of Glacial Morphological Characteristics in Ányêmaqên Mountains Using Multi-Source Time-Series High-Resolution Remote Sensing Imagery" Water 17, no. 18: 2749. https://doi.org/10.3390/w17182749
APA StyleXu, W., Chen, G., Wu, X., Li, D., Mao, Y., & Zhang, X. (2025). Analysis of Glacial Morphological Characteristics in Ányêmaqên Mountains Using Multi-Source Time-Series High-Resolution Remote Sensing Imagery. Water, 17(18), 2749. https://doi.org/10.3390/w17182749