SPI-Informed Drought Forecasts Integrating Advanced Signal Decomposition and Machine Learning Models
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Description
2.2. Time Varying Filter-Based Empirical Mode Decomposition (TVFEMD)
- For each signal evaluate the maximum possible location and assign it the label .
- Locate all occurrences of intermittency that meet the following requirements:
- 3
- On the rising or falling edge of , there are two possible places for each instance of ; if , then can be considered a floor. An alternative is to observe at its falling edge if .
- 4
- To make local adjustments to the cut-off frequency, interpolate between the peaks. The local narrow-band signal is then obtained by passing the input signal through time-varying filters.
- 5
- When applying a filter to the signal , the B-spline approximation is used, which uses the extreme timing of :
- 6
- The incoming signal’s compliance with the stop criterion can be determined by calculating it:
2.3. Gaussian Process Regression (GPR)
2.4. Long Short-Term Memory (LSTM)
2.5. Boosted Regression Tree (BRT)
2.6. Cascaded Forward Neural Network (CFNN)
2.7. Model Performance Evaluation
3. Model Development
- The TVFEMD is sensitive to noisy and non-stationary signals, particularly in the case of SPI’s. Moreover, the TVFEMD is also sensitive to the choice of hyperparameters such as the filter strength, the no. of IMFs to extract, and the regularization parameter. By acquiring the IMFs and residuals, the TVFEMD approach starts to demarcate the SPI1, SPI3, SPI6, and SPI12 data all at once. Through the use of trial and error, the optimal number of IMFs for the Springfield station was determined to be [SPI1 = 21, SPI3 = 20, SPI6 = 23, SPI12 = 20], while for Mackay it was [SPI1 = 25, SPI3 = 19, SPI6 = 25, SPI12 = 20]. Several numbers of IMFs were acquired and then selected the best numbers for which the models generated the best performance. The design parameters of the TVFEMD method during the decomposition of SPI indices are B-spline order, End flag parameter, Bandwidth threshold criteria, and no. of IMFs. When breaking down the data into individual station IMFs and residuals, the TVFEMD method’s design parameters are listed in Table 2.
- As seen in Figure 2, the statistically significant lags of each IMF at one month, three months, six months, and twelve months ahead (i.e., t − 1) SPI for the Springfield and Mackay stations were determined using the partial autocorrelation function (PACF). Strong correlations between the IMFs at lags (t − 1) were observed.
- We subsequently fed the statistically significant deconstructed IMFs straight into the model at this point, and we used the GPR model to build the hybrid TVFEMD-GPR method, which uses the large PACF delays at (t − 1) of SPI1 to predict the SPI one month from now. To predict drought indices for the stations in Springfield and Mackay, the procedure was performed for SPI3, SPI6, and SPI12 using the TVFEMD-GPR model. In order to build models, the data was split into two sets: training and testing. Data used to train the GPR model makes up 70% of the training set, whereas data used to validate the model makes up 30% of the testing set. In addition, the models were normalized and denormalized inside the [0, 1] interval to speed up their convergence. This study developed several benchmarking models to evaluate the TVFEMD-GPR model. The hybrid TVFEMD-LSTM, TVFEMD-BRT, and TVFEMD-CFNN models were created by fusing the standalone models LSTM, BRT, and CFNN with the TVFEMD. These models were used to forecast multi-scaler SPI drought indices. The suggested modeling framework is schematically shown in Figure 3.
- Improving the model’s accuracy during development is mostly dependent on fine-tuning and adjusting the hyperparameters. Finding the best hyperparameters can be performed in a number of ways; in this case, the trial-and-error method was adopted. Several sets of combinations of these hyperparameters were used and then we selected the optimum set for which the models generated highest precision to forecast SPI indices. To find the best hyperparameters in MATLAB, the RMSE served as the convergence criterion. The hyperparameters, which include the log likelihood, basis function, kernel function, beta, iteration, and more, are given in Table 3. The GPR model relied on these parameters. Key hyperparameters for the LSTM model include hidden units, optimizer, verboseness, batch size, gradient threshold, and epochs. The learn rate value and ensemble method (i.e., LSBoost) were the most crucial factors for BRT, whereas the number of neurons in the hidden layer and training procedure were the most critical for CFNN.
4. Application Results and Analysis
5. Further Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pandey, S.; Bhandari, H.S.; Hardy, B. Economic Costs of Drought and Rice Farmers’ Coping Mechanisms: A Cross-Country Comparative Analysis; International Rice Research Institute: Laguna, Philippines, 2007. [Google Scholar]
- Food and Agriculture Organization. The Impact of Disasters and Crises on Agriculture and Food Security; Report; Food and Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Aadhar, S.; Mishra, V. High-resolution near real-time drought monitoring in South Asia. Sci. Data 2017, 4, 170145. [Google Scholar] [CrossRef] [PubMed]
- Miyan, M.A. Droughts in Asian least developed countries: Vulnerability and sustainability. Weather Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef]
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Change 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Melesse, A.; Abtew, W.; Senay, G. Extreme Hydrology and Climate Variability: Monitoring, Modelling, Adaptation and Mitigation; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Baig, F.; Ali, L.; Faiz, M.A.; Chen, H.; Sherif, M. How accurate are the machine learning models in improving monthly rainfall prediction in hyper arid environment? J. Hydrol. 2024, 633, 131040. [Google Scholar] [CrossRef]
- Okumura, Y.M.; DiNezio, P.; Deser, C. Evolving impacts of multiyear La Niña events on atmospheric circulation and US drought. Geophys. Res. Lett. 2017, 44, 11614–11623. [Google Scholar] [CrossRef]
- Haerter, J.; Hagemann, S.; Moseley, C.; Piani, C. Climate model bias correction and the role of timescales. Hydrol. Earth Syst. Sci. 2011, 15, 1065–1079. [Google Scholar] [CrossRef]
- Yang, Q.; Li, M.; Zheng, Z.; Ma, Z. Regional applicability of seven meteorological drought indices in China. Sci. China Earth Sci. 2017, 60, 745–760. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, A.; Trenberth, K.E. Climate change and drought: A perspective on drought indices. Curr. Clim. Change Rep. 2018, 4, 145–163. [Google Scholar] [CrossRef]
- Stagge, J.H.; Tallaksen, L.M.; Gudmundsson, L.; Van Loon, A.F.; Stahl, K. Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climatol. 2015, 35, 4027–4040. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Z.-Y.; Xu, L.-J.; Ou, C.-Q. Meteorological drought forecasting based on a statistical model with machine learning techniques in Shaanxi province, China. Sci. Total Environ. 2019, 665, 338–346. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Alexandris, S.; Tsesmelis, D.E.; Athanasopoulos, G. Application of the standardized precipitation index (SPI) in Greece. Water 2011, 3, 787–805. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm 1. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Alley, W.M. The Palmer drought severity index: Limitations and assumptions. J. Appl. Meteorol. Climatol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef]
- Karl, T.R.; Koscielny, A.J. Drought in the united states: 1895–1981. J. Climatol. 1982, 2, 313–329. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Wable, P.S.; Jha, M.K.; Shekhar, A. Comparison of drought indices in a semi-arid river basin of India. Water Resour. Manag. 2019, 33, 75–102. [Google Scholar] [CrossRef]
- Tefera, A.S.; Ayoade, J.; Bello, N. Comparative analyses of SPI and SPEI as drought assessment tools in Tigray Region, Northern Ethiopia. SN Appl. Sci. 2019, 1, 1265. [Google Scholar] [CrossRef]
- Weng, B.; Yan, D.; Wang, H.; Liu, J.; Yang, Z.; Qin, T.; Yin, J. Drought assessment in the Dongliao River basin: Traditional approaches vs. generalized drought assessment index based on water resources systems. Nat. Hazards Earth Syst. Sci. 2015, 15, 1889–1906. [Google Scholar] [CrossRef]
- World Meteorological Organization. Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- Kuwayama, Y.; Thompson, A.; Bernknopf, R.; Zaitchik, B.; Vail, P. Estimating the Impact of Drought on Agriculture Using the U.S. Drought Monitor. Am. J. Agric. Econ. 2019, 101, 193–210. [Google Scholar] [CrossRef]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate change and human health: Present and future risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
- FAO. 2017: The Impact of Disasters and Crises on Agriculture and Food Security; Food and Agriculture Organization: Rome, Italy, 2017. [Google Scholar]
- Edwards, B.; Gray, M.; Hunter, B. The social and economic impacts of drought. Aust. J. Soc. Issues 2019, 54, 22–31. [Google Scholar] [CrossRef]
- González Tánago, I.; Urquijo, J.; Blauhut, V.; Villarroya, F.; De Stefano, L. Learning from experience: A systematic review of assessments of vulnerability to drought. Nat. Hazards 2016, 80, 951–973. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Li, W.; Liu, X.; Zhang, X. Drought: Progress in broadening its understanding. Wiley Interdiscip. Rev. Water 2020, 7, e1407. [Google Scholar] [CrossRef]
- Fung, K.; Huang, Y.; Koo, C.; Soh, Y. Drought forecasting: A review of modelling approaches 2007–2017. J. Water Clim. Change 2020, 11, 771–799. [Google Scholar] [CrossRef]
- Sundararajan, K.; Garg, L.; Srinivasan, K.; Bashir, A.K.; Kaliappan, J.; Ganapathy, G.P.; Selvaraj, S.K.; Meena, T. A contemporary review on drought modeling using machine learning approaches. Comput. Model. Eng. Sci. 2021, 128, 447–487. [Google Scholar] [CrossRef]
- Prodhan, F.A.; Zhang, J.; Hasan, S.S.; Pangali Sharma, T.P.; Mohana, H.P. A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions. Environ. Model. Softw. 2022, 149, 105327. [Google Scholar] [CrossRef]
- Belayneh, A.; Adamowski, J.; Khalil, B. Short-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet transforms and machine learning methods. Sustain. Water Resour. Manag. 2016, 2, 87–101. [Google Scholar] [CrossRef]
- Docheshmeh Gorgij, A.; Alizamir, M.; Kisi, O.; Elshafie, A. Drought modelling by standard precipitation index (SPI) in a semi-arid climate using deep learning method: Long short-term memory. Neural Comput. Appl. 2022, 34, 2425–2442. [Google Scholar] [CrossRef]
- Pande, C.B.; Sidek, L.M.; Varade, A.M.; Elkhrachy, I.; Radwan, N.; Tolche, A.D.; Elbeltagi, A. Forecasting of meteorological drought using ensemble and machine learning models. Environ. Sci. Eur. 2024, 36, 160. [Google Scholar] [CrossRef]
- Santos, C.A.G.; Morais, B.S.; Silva, G.B. Drought forecast using an artificial neural network for three hydrological zones in San Francisco River basin, Brazil. IAHS Publ. 2009, 333, 302. [Google Scholar]
- Jalalkamali, A.; Moradi, M.; Moradi, N. Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index. Int. J. Environ. Sci. Technol. 2015, 12, 1201–1210. [Google Scholar] [CrossRef]
- Shahnazi, S.; Roushangar, K.; Hashemi, H. A novel implementation of pre-processing approaches and hybrid kernel-based model for short-and long-term groundwater drought forecasting. J. Hydrol. 2025, 652, 132667. [Google Scholar] [CrossRef]
- Soman, K.P.; Poornachandran, P.; Athira, S.; Harikumar, K. Recursive Variational Mode Decomposition Algorithm for Real Time Power Signal Decomposition. Procedia Technol. 2015, 21, 540–546. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 11, 674–693. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Kisi, O. Applications of hybrid wavelet–artificial intelligence models in hydrology: A review. J. Hydrol. 2014, 514, 358–377. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.-C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147. [Google Scholar]
- Colominas, M.A.; Schlotthauer, G.; Torres, M.E. Improved complete ensemble EMD: A suitable tool for biomedical signal processing. Biomed. Signal Process. Control 2014, 14, 19–29. [Google Scholar] [CrossRef]
- Prasad, R.; Deo, R.C.; Li, Y.; Maraseni, T. Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach. Catena 2019, 177, 149–166. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.; Mo, W. A time varying filter approach for empirical mode decomposition. Signal Process. 2017, 138, 146–158. [Google Scholar] [CrossRef]
- Awelisah, Y.M.; Li, G.; Lin, L. Towards robust reduction of nonlinear errors in dynamic spectrum spectroscopy for effective noninvasive optical detection of blood components. Infrared Phys. Technol. 2022, 121, 104049. [Google Scholar] [CrossRef]
- Song, C.; Chen, X.; Xia, W.; Ding, X.; Xu, C. Application of a novel signal decomposition prediction model in minute sea level prediction. Ocean Eng. 2022, 260, 111961. [Google Scholar] [CrossRef]
- Williams, C.; Rasmussen, C. Gaussian processes for regression. Adv. Neural Inf. Process. Syst. 1995, 8, 514–520. Available online: https://dl.acm.org/doi/10.5555/2998828.2998901 (accessed on 15 September 2025).
- Ghasemi, P.; Karbasi, M.; Nouri, A.Z.; Tabrizi, M.S.; Azamathulla, H.M. Application of Gaussian process regression to forecast multi-step ahead SPEI drought index. Alex. Eng. J. 2021, 60, 5375–5392. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Staudemeyer, R.C.; Morris, E.R. Understanding LSTM—A tutorial into long short-term memory recurrent neural networks. arXiv 2019, arXiv:1909.09586. [Google Scholar]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R. A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour. Manag. 2015, 29, 5217–5236. [Google Scholar] [CrossRef]
- Carty, D.M.; Young, T.M.; Zaretzki, R.L.; Guess, F.M.; Petutschnigg, A. Predicting and correlating the strength properties of wood composite process parameters by use of boosted regression tree models. For. Prod. J. 2015, 65, 365–371. [Google Scholar] [CrossRef]
- Fahlman, S.; Lebiere, C. The cascade-correlation learning architecture. Adv. Neural Inf. Process. Syst. 1989, 2, 524–532. Available online: https://dl.acm.org/doi/10.5555/109230.107380 (accessed on 15 September 2025).
- Dharma, S.; Hassan, M.H.; Ong, H.C.; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Milano, J. Experimental study and prediction of the performance and exhaust emissions of mixed Jatropha curcas-Ceiba pentandra biodiesel blends in diesel engine using artificial neural networks. J. Clean. Prod. 2017, 164, 618–633. [Google Scholar] [CrossRef]
- Willmott, C.J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 1982, 63, 1309–1313. [Google Scholar] [CrossRef]
- McCuen, R.H.; Knight, Z.; Cutter, A.G. Evaluation of the Nash–Sutcliffe efficiency index. J. Hydrol. Eng. 2006, 11, 597–602. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Mishra, S.; Sturm, B.L.; Dixon, S. Local interpretable model-agnostic explanations for music content analysis. In Proceedings of the ISMIR, Suzhou, China, 23–27 October 2017; pp. 537–543. [Google Scholar]
- García, M.V.; Aznarte, J.L. Shapley additive explanations for NO2 forecasting. Ecol. Inform. 2020, 56, 101039. [Google Scholar] [CrossRef]
- Tiwari, M.K.; Chatterjee, C. A new wavelet–bootstrap–ANN hybrid model for daily discharge forecasting. J. Hydroinform. 2011, 13, 500–519. [Google Scholar] [CrossRef]
- Sloughter, J.M.; Gneiting, T.; Raftery, A.E. Probabilistic wind speed forecasting using ensembles and Bayesian model averaging. J. Am. Stat. Assoc. 2010, 105, 25–35. [Google Scholar] [CrossRef]
Geographic Description | Springfield | Mackay | ||||||
---|---|---|---|---|---|---|---|---|
Longitude (°E) | 152.9170 | 149.1868 | ||||||
Latitude (°S) | −27.6542 | −21.1443 | ||||||
Elevation | 69 m | 11 m | ||||||
Statistical Description | SPI1 | SPI3 | SPI6 | SPI12 | SPI1 | SPI3 | SPI6 | SPI12 |
Minimum | −4.029 | −3.300 | −3.081 | −3.236 | −2.634 | −2.765 | −2.652 | −2.322 |
Maximum | 3.921 | 3.582 | 3.422 | 3.580 | 3.765 | 3.655 | 3.514 | 3.236 |
Mean | 0.001 | −0.001 | −0.0005 | −0.0001 | −0.0009 | −0.003 | −0.002 | −0.001 |
Std. Deviation | 0.996 | 1.000 | 1.000 | 1.0003 | 0.988 | 0.999 | 0.999 | 1.0001 |
Skewness | 0.044 | 0.119 | 0.114 | 0.051 | 0.320 | 0.302 | 0.324 | 0.352 |
Kurtosis | 0.401 | 0.103 | 0.078 | 0.035 | 0.345 | 0.222 | 0.120 | −0.198 |
Springfield | Mackay | |||||||
---|---|---|---|---|---|---|---|---|
B-Spline Order | End Flag Parameter | Bandwidth Threshold Criteria | No. of IMFs | B-Spline Order | End Flag Parameter | Bandwidth Threshold Criteria | No. of IMFs | |
SPI1 | 26 | 0 | 0.1 | 21 | 26 | 0 | 0.1 | 25 |
SPI3 | 26 | 0 | 0.1 | 20 | 26 | 0 | 0.1 | 19 |
SPI6 | 26 | 0 | 0.1 | 23 | 26 | 0 | 0.1 | 25 |
SPI12 | 26 | 0 | 0.1 | 20 | 26 | 0 | 0.1 | 20 |
Stations | Models | Tuning Parameters |
---|---|---|
Springfield Station | GPR | Hybrid and Standalone Structure
|
LSTM |
| |
BRT |
| |
CFNN |
| |
Mackay Station | GPR | Hybrid and Standalone Structure
|
LSTM |
| |
BRT |
| |
CFNN |
|
Station 1: Mackay | Station 2: Springfield | |||||||
---|---|---|---|---|---|---|---|---|
R | RMSE | MAE | RAE | R | RMSE | MAE | RAE | |
SPI1 | ||||||||
GPR | 0.1033 | 0.9668 | 0.7528 | 0.9940 | 0.0540 | 0.9937 | 0.7708 | 0.9967 |
TVFEMD-GPR | 0.7113 | 0.6831 | 0.5335 | 0.7044 | 0.7206 | 0.6887 | 0.5432 | 0.7024 |
CFNN | 0.0519 | 0.9876 | 0.7690 | 1.0154 | 0.0314 | 1.0294 | 0.7984 | 1.0324 |
TVFEMD-CFNN | 0.5285 | 0.9321 | 0.7297 | 0.9635 | 0.5235 | 0.9568 | 0.7453 | 0.9637 |
LSTM | 0.0895 | 1.4475 | 1.2002 | 1.5847 | 0.0027 | 1.9384 | 1.7033 | 2.2026 |
TVFEMD-LSTM | 0.9519 | 1.1795 | 1.0851 | 1.4327 | 0.9461 | 1.7038 | 1.6326 | 2.1112 |
BRT | −0.0167 | 1.0714 | 0.8502 | 1.1226 | −0.0227 | 1.0695 | 0.8300 | 1.0734 |
TVFEMD-BRT | 0.5936 | 0.7846 | 0.6301 | 0.8320 | 0.6206 | 0.7837 | 0.6068 | 0.7847 |
SPI3 | ||||||||
GPR | 0.6814 | 0.7090 | 0.5357 | 0.7250 | 0.6774 | 0.7022 | 0.5497 | 0.7260 |
TVFEMD-GPR | 0.8105 | 0.5679 | 0.4336 | 0.5868 | 0.8197 | 0.5468 | 0.4310 | 0.5693 |
CFNN | 0.6684 | 0.7225 | 0.5454 | 0.7382 | 0.6734 | 0.7508 | 0.5967 | 0.7881 |
TVFEMD-CFNN | 0.7517 | 0.6948 | 0.5356 | 0.7249 | 0.5645 | 1.1190 | 0.8565 | 1.1312 |
LSTM | 0.7001 | 1.3373 | 1.1497 | 1.5559 | 0.7057 | 1.4861 | 1.3127 | 1.7337 |
TVFEMD-LSTM | 0.9644 | 1.1628 | 1.0748 | 1.4546 | 0.9726 | 1.3909 | 1.3189 | 1.7419 |
BRT | 0.6493 | 0.7456 | 0.5755 | 0.7789 | 0.6273 | 0.7553 | 0.5830 | 0.7699 |
TVFEMD-BRT | 0.6602 | 0.7298 | 0.5668 | 0.7671 | 0.6339 | 0.7423 | 0.6063 | 0.8008 |
SPI6 | ||||||||
GPR | 0.8157 | 0.5528 | 0.4054 | 0.5408 | 0.8369 | 0.5393 | 0.3981 | 0.5043 |
TVFEMD-GPR | 0.9076 | 0.4011 | 0.3009 | 0.4014 | 0.9114 | 0.4074 | 0.3154 | 0.3996 |
CFNN | 0.8143 | 0.5555 | 0.4135 | 0.5515 | 0.8312 | 0.5478 | 0.4071 | 0.5157 |
TVFEMD-CFNN | 0.5853 | 0.9625 | 0.7781 | 1.0380 | 0.4706 | 1.6590 | 1.3601 | 1.7229 |
LSTM | 0.8134 | 1.2459 | 1.0922 | 1.4570 | 0.8364 | 1.3798 | 1.2406 | 1.5715 |
TVFEMD-LSTM | 0.9395 | 1.1841 | 1.0823 | 1.4437 | 0.9758 | 1.3148 | 1.2374 | 1.5675 |
BRT | 0.7889 | 0.5899 | 0.4331 | 0.5777 | 0.8048 | 0.5916 | 0.4313 | 0.5463 |
TVFEMD-BRT | 0.7204 | 0.6650 | 0.5240 | 0.6991 | 0.7107 | 0.6970 | 0.5580 | 0.7068 |
SPI12 | ||||||||
GPR | 0.9439 | 0.3223 | 0.2039 | 0.2602 | 0.9438 | 0.3497 | 0.2455 | 0.2801 |
TVFEMD-GPR | 0.9637 | 0.2608 | 0.1768 | 0.2256 | 0.9666 | 0.2776 | 0.2019 | 0.2304 |
CFNN | 0.9416 | 0.3294 | 0.2108 | 0.2690 | 0.9377 | 0.3696 | 0.2600 | 0.2967 |
TVFEMD-CFNN | 0.8471 | 0.5493 | 0.4007 | 0.5113 | 0.8375 | 0.7352 | 0.5906 | 0.6738 |
LSTM | 0.9460 | 1.0344 | 0.9172 | 1.1704 | 0.9372 | 1.4143 | 1.3032 | 1.4869 |
TVFEMD-LSTM | 0.9801 | 1.0085 | 0.9050 | 1.1548 | 0.9655 | 1.4034 | 1.3045 | 1.4884 |
BRT | 0.9247 | 0.3715 | 0.2324 | 0.2966 | 0.9350 | 0.3756 | 0.2684 | 0.3063 |
TVFEMD-BRT | 0.8078 | 0.5944 | 0.4783 | 0.6104 | 0.7550 | 0.7056 | 0.5585 | 0.6372 |
Station 1: Mackay | Station 2: Springfield | |||||
---|---|---|---|---|---|---|
ENS | IA | U95% | ENS | IA | U95% | |
SPI1 | ||||||
GPR | 0.0091 | 0.1707 | 2.6806 | −0.0007 | 0.1261 | 2.7546 |
TVFEMD-GPR | 0.5054 | 0.8082 | 1.8943 | 0.5192 | 0.8182 | 1.9100 |
CFNN | −0.0338 | 0.2501 | 2.7370 | −0.0739 | 0.2274 | 2.8545 |
TVFEMD-CFNN | 0.0790 | 0.7258 | 2.5849 | 0.0722 | 0.7165 | 2.6312 |
LSTM | −1.2208 | 0.4384 | 3.4135 | −2.8075 | 0.4069 | 4.2730 |
TVFEMD-LSTM | −0.4744 | 0.6653 | 2.4887 | −1.9417 | 0.5532 | 3.4748 |
BRT | −0.2167 | 0.3014 | 2.9712 | −0.1592 | 0.2797 | 2.9631 |
TVFEMD-BRT | 0.3475 | 0.7285 | 2.1753 | 0.3776 | 0.7593 | 2.1733 |
SPI3 | ||||||
GPR | 0.4644 | 0.7898 | 1.9663 | 0.4585 | 0.7931 | 1.9472 |
TVFEMD-GPR | 0.6564 | 0.8893 | 1.5745 | 0.6716 | 0.8953 | 1.5163 |
CFNN | 0.4439 | 0.7898 | 2.0032 | 0.3808 | 0.7997 | 2.0460 |
TVFEMD-CFNN | 0.4857 | 0.8625 | 1.9241 | −0.3751 | 0.7018 | 2.9534 |
LSTM | −0.9053 | 0.5439 | 2.9995 | −1.4254 | 0.5298 | 3.2385 |
TVFEMD-LSTM | −0.4404 | 0.6671 | 2.4409 | −1.1245 | 0.6058 | 2.8607 |
BRT | 0.4077 | 0.7856 | 2.0677 | 0.3735 | 0.7737 | 2.0943 |
TVFEMD-BRT | 0.4326 | 0.7691 | 2.0210 | 0.3947 | 0.7599 | 2.0544 |
SPI6 | ||||||
GPR | 0.6652 | 0.8926 | 1.5331 | 0.7001 | 0.9079 | 1.4957 |
TVFEMD-GPR | 0.8237 | 0.9502 | 1.1123 | 0.8289 | 0.9534 | 1.1296 |
CFNN | 0.6619 | 0.8937 | 1.5403 | 0.6906 | 0.9040 | 1.5192 |
TVFEMD-CFNN | −0.0148 | 0.7445 | 2.6080 | −1.8366 | 0.6119 | 4.5025 |
LSTM | −0.7003 | 0.5950 | 2.7406 | −0.9623 | 0.5867 | 2.9725 |
TVFEMD-LSTM | −0.5359 | 0.6485 | 2.5058 | −0.7817 | 0.6354 | 2.7207 |
BRT | 0.6187 | 0.8796 | 1.6360 | 0.6392 | 0.8920 | 1.6393 |
TVFEMD-BRT | 0.5155 | 0.8071 | 1.8442 | 0.4992 | 0.8235 | 1.9306 |
SPI12 | ||||||
GPR | 0.8908 | 0.9701 | 0.8938 | 0.8907 | 0.9702 | 0.9697 |
TVFEMD-GPR | 0.9285 | 0.9813 | 0.7228 | 0.9311 | 0.9829 | 0.7695 |
CFNN | 0.8859 | 0.9687 | 0.9123 | 0.8779 | 0.9678 | 1.0248 |
TVFEMD-CFNN | 0.6829 | 0.9134 | 1.4972 | 0.5171 | 0.8994 | 2.0150 |
LSTM | −0.1241 | 0.6967 | 2.2457 | −0.7866 | 0.6341 | 2.9745 |
TVFEMD-LSTM | −0.0684 | 0.7142 | 2.1609 | −0.7591 | 0.6386 | 2.9321 |
BRT | 0.8549 | 0.9600 | 1.0300 | 0.8739 | 0.9661 | 1.0418 |
TVFEMD-BRT | 0.6287 | 0.8571 | 1.6456 | 0.5552 | 0.8295 | 1.9450 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aldhafeeri, A.A.; Ali, M.; Khan, M.; Labban, A.H. SPI-Informed Drought Forecasts Integrating Advanced Signal Decomposition and Machine Learning Models. Water 2025, 17, 2747. https://doi.org/10.3390/w17182747
Aldhafeeri AA, Ali M, Khan M, Labban AH. SPI-Informed Drought Forecasts Integrating Advanced Signal Decomposition and Machine Learning Models. Water. 2025; 17(18):2747. https://doi.org/10.3390/w17182747
Chicago/Turabian StyleAldhafeeri, Anwar Ali, Mumtaz Ali, Mohsin Khan, and Abdulhaleem H. Labban. 2025. "SPI-Informed Drought Forecasts Integrating Advanced Signal Decomposition and Machine Learning Models" Water 17, no. 18: 2747. https://doi.org/10.3390/w17182747
APA StyleAldhafeeri, A. A., Ali, M., Khan, M., & Labban, A. H. (2025). SPI-Informed Drought Forecasts Integrating Advanced Signal Decomposition and Machine Learning Models. Water, 17(18), 2747. https://doi.org/10.3390/w17182747