Radionuclide Tracing in Global Soil Erosion Studies: A Bibliometric and Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Data Visualization Analysis
3. Results
3.1. Publication Trend Analysis
3.2. Core Journal Distribution Analysis
3.3. Highly Cited Paper Analysis
Title | TC | LCS | GCS | LCS/GCS | References | Journals |
---|---|---|---|---|---|---|
Soil degradation by erosion (Original Research) | 33.83 | 35 | 812 | 4.73 | [30] | Land Degradation &Development |
Natural streams and the legacy of water-powered mills (Original Research) | 36.94 | 10 | 628 | 1.59 | [31] | Science |
Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7 Be for assessing soil erosion and sedimentation (Review) | 19.29 | 208 | 328 | 63.41 | [9] | Journal of Environmental Radioactivity |
Biogeochemical processes and geotechnical applications: progress, opportunities and challenges (Review) | 49.17 | 0 | 590 | 0 | [38] | Géotechnique |
Post-wildfire soil erosion in the Mediterranean: Review and future research directions (Review) | 37.86 | 4 | 530 | 0.75 | [34] | Earth-Science Reviews |
(Dis)Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem (Review) | 39.17 | 19 | 470 | 4.04 | [32] | Earth Surface Processes and Landfroms |
Karst hydrology: recent developments and open questions (Review) | 20.35 | 1 | 468 | 0.21 | [33] | Engineering Geology |
Landscape form and millennial erosion rates in the San Gabriel Mountains, CA (Original Research) | 25.8 | 6 | 387 | 1.55 | [35] | Earth and Planetary Science Letters |
The late-Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations (Original Research) | 13.77 | 6 | 194 | 3.09 | [37] | Marine Geology |
Marsh vertical accretion via vegetative growth (Original Research) | 15.89 | 3 | 302 | 0.99 | [36] | Estuarine, Coastal and Shelf Science |
3.4. Institutional and National/Regional Distribution
3.4.1. Major Institutions
3.4.2. Countries/Regions
3.4.3. Author Productivity and Influence
3.5. Co-Word Evolution and Clustering
3.5.1. Keyword Co-Occurrence Network Analysis
3.5.2. Research Hotspot Evolution
3.5.3. Topic Clustering Analysis
4. Discussion
4.1. Multi-Scale Applications and Implications for Soil Management and SDGs
4.2. Integration of Radionuclide Tracer Techniques with Complementary Methods
4.3. Sampling and Test Optimization
4.4. Challenges, Opportunities, and Interdisciplinary Prospects
4.5. Contributions and Limitations of This Study
5. Conclusions
5.1. Key Findings
- (1)
- Development and academic landscape: This occurred in three phases as follows: initial application (2000–2007), stabilization (2008–2015), and rapid development (2016–2023). All phases show positive growth, reflecting the potential for sustained development. Eight core journals dominate the research direction, among which Catena stands out in terms of comprehensive evaluation, and the highly cited literature highlights the methodological advantages and interdisciplinary value of radionuclide tracing in multi-scale erosion assessment and sustainable land management.
- (2)
- Institution and country distribution: CAS leads in terms of publication volume and network centrality, while CNRS stands out in terms of overall research influence. National level: China focuses on technological innovation, the US focuses on theoretical breakthroughs, and the UK contributes significantly to methodological research. Evrard Olivier was identified as a field leader.
- (3)
- Evolution of research hotspots: Core themes of “soil erosion” and “137Cs” persisted. Emerging topics included “paleolimnology” and “geochronology”, with “climate change” and “human impact” on erosion and their radionuclide tracer signatures becoming central concerns.
- (4)
- Thematic cluster dynamics: Keyword co-occurrence analysis delineated ten clusters, from “soil erosion” to “Chernobyl-derived 137Cs”, reflecting a shift from fundamental erosion mechanisms to diverse, multi-scale studies of wind erosion, sediment fingerprinting, erosion modeling, and Chernobyl tracer applications.
- (5)
- Radionuclide tracing will remain a transformative tool in soil erosion science and soil resource management when embedded within an integrated, multi-scale framework that leverages technological synergy. Its future impact depends on coupling FRN-based datasets with complementary approaches—such as geochemistry, hydrology, and ecology—while harnessing advanced capabilities from artificial intelligence (AI), high-resolution remote sensing (RS), and UAV-LiDAR terrain monitoring. This convergence enables the calibration and validation of emerging models, bridges spatial–temporal scale gaps, and overcomes barriers posed by complex topography and extreme climate events. Such interdisciplinary integration is essential to delivering evidence-based strategies for sustainable soil management and achieving land degradation neutrality under SDG 15.3.1.
5.2. Outlook
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Keesstra, S.D.; Bouma, J.; Wallinga, J.; Tittonell, P.; Smith, P.; Cerdà, A.; Montanarella, L.; Quinton, J.; Pachepsky, Y.; Van Der Putten, W.H. Forum paper: The significance of soils and soil science towards realization of the UN sustainable development goals (SDGS). Soil Discuss. 2016, 2016, 1–28. [Google Scholar]
- Nedd, R.; Anandhi, A. A synthesis on land degradation in the context of sustainable development goals. Land Degrad. Dev. 2024, 35, 3937–3964. [Google Scholar] [CrossRef]
- Ghosh, A.; Rambaud, P.; Finegold, Y.; Jonckheere, I.; Martin-Ortega, P.; Jalal, R.; Adebayo, A.D.; Alvarez, A.; Borretti, M.; Caela, J. Monitoring Sustainable Development Goal Indicator 15.3. 1 on Land Degradation Using SEPAL: Examples, Challenges and Prospects. Land 2024, 13, 1027. [Google Scholar] [CrossRef]
- Gaspar, L.; Navas, A.; Walling, D.; Machín, J.; Arozamena, J.G. Using 137Cs and 210Pbex to assess soil redistribution on slopes at different temporal scales. Catena 2013, 102, 46–54. [Google Scholar] [CrossRef]
- Cresswell, T.; Metian, M.; Fisher, N.S.; Charmasson, S.; Hansman, R.L.; Bam, W.; Bock, C.; Swarzenski, P.W. Exploring new frontiers in marine radioisotope tracing–adapting to new opportunities and challenges. Front. Mar. Sci. 2020, 7, 406. [Google Scholar] [CrossRef]
- David Raj, A.; Kumar, S.; Sooryamol, K.; Sankar, M.; George, K.J. Assessment of soil erosion rates, carbon stocks, and erosion-induced carbon loss in dominant forest types of the Himalayan region using fallout-137Cs. Sci. Rep. 2025, 15, 14950. [Google Scholar] [CrossRef]
- Porto, P.; Walling, D.E.; Callegari, G. Using repeated 137 Cs and 210 Pbex measurements to establish sediment budgets for different time windows and explore the effect of connectivity on soil erosion rates in a small experimental catchment in Southern Italy. Land Degrad. Dev. 2018, 29, 1819–1832. [Google Scholar] [CrossRef]
- Gharbi, F.; AlSheddi, T.H.; Ben Ammar, R.; Ahmed El-Naggar, M. Combination of 137Cs and 210Pb radioactive atmospheric fallouts to estimate soil erosion for the same time scale. Int. J. Environ. Res. Public Health 2020, 17, 8292. [Google Scholar] [CrossRef]
- Mabit, L.; Benmansour, M.; Walling, D. Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. J. Environ. Radioact. 2008, 99, 1799–1807. [Google Scholar] [CrossRef]
- Joint Fao/IAEA Division of Nuclear Techniques in Food and Agriculture, Soil and Water Management and Crop Nutrition Section. 1011-4289; Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies. Joint Fao/IAEA Division of Nuclear Techniques in Food and Agriculture, Soil and Water Management and Crop Nutrition Section: Vienna, Austria, 2014.
- Evrard, O.; Chaboche, P.-A.; Ramon, R.; Foucher, A.; Laceby, J.P. A global review of sediment source fingerprinting research incorporating fallout radiocesium (137Cs). Geomorphology 2020, 362, 107103. [Google Scholar] [CrossRef]
- Walling, D. Using fallout radionuclides to investigate erosion and sediment delivery: Some recent advances. IAHS Publ. 2010, 337, 3–16. [Google Scholar]
- Catalá, A.; Latorre, B.; Gaspar, L.; Navas, A. Estimating Soil Redistribution Rates with the RadEro Model: A Physically Based Compartmental Model for 137Cs Analysis in an R Package. Environ. Model. Softw. 2025, 192, 106551. [Google Scholar] [CrossRef]
- Tian, P.; Zhu, Z.; Yue, Q.; He, Y.; Zhang, Z.; Hao, F.; Guo, W.; Chen, L.; Liu, M. Soil erosion assessment by RUSLE with improved P factor and its validation: Case study on mountainous and hilly areas of Hubei Province, China. Int. Soil Water Conserv. Res. 2021, 9, 433–444. [Google Scholar] [CrossRef]
- Meliho, M.; Nouira, A.; Benmansour, M.; Boulmane, M.; Khattabi, A.; Mhammdi, N.; Benkdad, A. Assessment of soil erosion rates in a Mediterranean cultivated and uncultivated soils using fallout 137Cs. J. Environ. Radioact. 2019, 208, 106021. [Google Scholar] [CrossRef]
- Zhang, X.J.; Busteed, P. Accuracy and sensitivity of soil erosion estimation using 137Cs technology: A statistical perspective. Geoderma 2024, 444, 116863. [Google Scholar] [CrossRef]
- Passas, I. Bibliometric analysis: The main steps. Encyclopedia 2024, 4, 1014–1025. [Google Scholar] [CrossRef]
- Ellegaard, O.; Wallin, J.A. The bibliometric analysis of scholarly production: How great is the impact? Scientometrics 2015, 105, 1809–1831. [Google Scholar] [CrossRef]
- Arencibia-Jorge, R.; Vega-Almeida, R.L.; Carrillo-Calvet, H. Evolución y alcance multidisciplinar de tres técnicas de análisis bibliométrico. Palabra Clave 2020, 10, 102. [Google Scholar] [CrossRef]
- Zupic, I.; Čater, T. Bibliometric methods in management and organization. Organ. Res. Methods 2015, 18, 429–472. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Jin, J.; Zhao, H.; Ji, P. Topic attention encoder: A self-supervised approach for short text clustering. J. Inf. Sci. 2022, 48, 701–717. [Google Scholar] [CrossRef]
- Wąs, T.; Skibski, O. Axiomatic characterization of pagerank. Artif. Intell. 2023, 318, 103900. [Google Scholar] [CrossRef]
- Luo, S. Distributed pagerank computation: An improved theoretical study. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; pp. 4496–4503. [Google Scholar]
- Gómez-Espés, A.; Färber, M.; Jatowt, A. Benefits of international collaboration in computer science: A case study of China, the European Union, and the United States. Scientometrics 2024, 129, 1155–1171. [Google Scholar] [CrossRef]
- Kamrani, P.; Dorsch, I.; Stock, W.G. Do researchers know what the h-index is? And how do they estimate its importance? Scientometrics 2021, 126, 5489–5508. [Google Scholar] [CrossRef]
- Borgohain, D.J.; Verma, M.K.; Nazim, M.; Sarkar, M. Application of Bradford’s law of scattering and Leimkuhler model to information science literature. COLLNET J. Scientometr. Inf. Manag. 2021, 15, 197–212. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- Walter, R.C.; Merritts, D.J. Natural streams and the legacy of water-powered mills. Science 2008, 319, 299–304. [Google Scholar] [CrossRef]
- Fryirs, K. (Dis) Connectivity in catchment sediment cascades: A fresh look at the sediment delivery problem. Earth Surf. Process. Landf. 2013, 38, 30–46. [Google Scholar] [CrossRef]
- White, W.B. Karst hydrology: Recent developments and open questions. Eng. Geol. 2002, 65, 85–105. [Google Scholar] [CrossRef]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- DiBiase, R.A.; Whipple, K.X.; Heimsath, A.M.; Ouimet, W.B. Landscape form and millennial erosion rates in the San Gabriel Mountains, CA. Earth Planet. Sci. Lett. 2010, 289, 134–144. [Google Scholar] [CrossRef]
- Nyman, J.A.; Walters, R.J.; Delaune, R.D.; Patrick, W.H., Jr. Marsh vertical accretion via vegetative growth. Estuar. Coast. Shelf Sci. 2006, 69, 370–380. [Google Scholar] [CrossRef]
- Cattaneo, A.; Correggiari, A.; Langone, L.; Trincardi, F. The late-Holocene Gargano subaqueous delta, Adriatic shelf: Sediment pathways and supply fluctuations. Mar. Geol. 2003, 193, 61–91. [Google Scholar] [CrossRef]
- Dejong, J.T.; Soga, K.; Kavazanjian, E.; Burns, S.; Van Paassen, L.; Al Qabany, A.; Aydilek, A.; Bang, S.; Burbank, M.; Caslake, L.F. Biogeochemical Processes and Geotechnical Applications: Progress, Opportunities and Challenges. In Bio-and Chemo-Mechanical Processes in Geotechnical Engineering: Géotechnique Symposium in Print 2013; Ice Publishing: London, UK, 2014; pp. 143–157. [Google Scholar]
- Pratiwi, N.M.; Ibrahim, C.; Alkarimah, N.U.; Kangko, D.D.; Astarika, R.; Jopang, J. Author productivity analysis in Q1 of authors in journal library and information science Q1 journals using with Lotka’s Law. Berk. Ilmu Perpust. Dan Inf. 2024, 20, 163–176. [Google Scholar] [CrossRef]
- Mirzaee, S.; Gomez, C.; Pajouhesh, M.; Abdollahi, K. Soil erosion and sediment change detection using UAV technology. In Remote Sensing of Soil and Land Surface Processes; Elsevier: Amsterdam, The Netherlands, 2024; pp. 271–279. [Google Scholar]
- Shojaeezadeh, S.A.; Al-Wardy, M.; Nikoo, M.R.; Mooselu, M.G.; Alizadeh, M.R.; Adamowski, J.F.; Moradkhani, H.; Alamdari, N.; Gandomi, A.H. Soil erosion in the United States: Present and future (2020–2050). Catena 2024, 242, 108074. [Google Scholar] [CrossRef]
- Ciampalini, R.; Pastor, A.; Huard, F.; Follain, S.; Licciardello, F.; Crabit, A.; Raclot, D. Modelling soil erosion focusing on event-size occurrences under global change in a vineyard catchment. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 24–28 April 2023; p. EGU–11301. [Google Scholar]
- Su, Z.; Wang, L.; Liu, Y.; Fu, B.; Zhang, J.; Wu, Z.; Zhou, T.; Wang, J. 137Cs tracing of the spatial patterns in soil redistribution, organic carbon and total nitrogen in the southeastern Tibetan Plateau. Int. Soil Water Conserv. Res. 2023, 11, 86–96. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; Nadal-Romero, E.; Lana-Renault, N.; Beguería, S. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology 2013, 198, 20–36. [Google Scholar] [CrossRef]
- Robbins, B.A.; Montalvo-Bartolomei, A.M.; Griffiths, D. Analyses of backward erosion progression rates from small-scale flume experiments. J. Geotech. Geoenviron. Eng. 2020, 146, 04020093. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Panagos, P.; Lugato, E.; Yang, J.E.; Alewell, C.; Wuepper, D.; Montanarella, L.; Ballabio, C. Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Natl. Acad. Sci. USA 2020, 117, 21994–22001. [Google Scholar] [CrossRef]
- Wu, D.; Zou, C.; Cao, W.; Xiao, T.; Gong, G. Ecosystem services changes between 2000 and 2015 in the Loess Plateau, China: A response to ecological restoration. PLoS ONE 2019, 14, e0209483. [Google Scholar] [CrossRef]
- Nosrati, K.; Akbari-Mahdiabad, M.; Fiener, P.; Collins, A.L. Using different size fractions to source fingerprint fine-grained channel bed sediment in a large drainage basin in Iran. Catena 2021, 200, 105173. [Google Scholar] [CrossRef]
- Wu, C.; Ji, C.; Shi, B.; Wang, Y.; Gao, J.; Yang, Y.; Mu, J. The impact of climate change and human activities on streamflow and sediment load in the Pearl River basin. Int. J. Sediment Res. 2019, 34, 307–321. [Google Scholar] [CrossRef]
- Segura, C.; Sun, G.; McNulty, S.; Zhang, Y. Potential impacts of climate change on soil erosion vulnerability across the conterminous United States. J. Soil Water Conserv. 2014, 69, 171–181. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Geitner, C.; Mayr, A.; Rutzinger, M.; Löbmann, M.T.; Tonin, R.; Zerbe, S.; Wellstein, C.; Markart, G.; Kohl, B. Shallow erosion on grassland slopes in the European Alps–Geomorphological classification, spatio-temporal analysis, and understanding snow and vegetation impacts. Geomorphology 2021, 373, 107446. [Google Scholar] [CrossRef]
- Chappell, A.; Warren, A. Spatial scales of 137Cs-derived soil flux by wind in a 25 km2 arable area of eastern England. Catena 2003, 52, 209–234. [Google Scholar] [CrossRef]
- Edwards, B.; Webb, N.; Brown, D.; Elias, E.; Peck, D.; Pierson, F.; Williams, C.; Herrick, J. Climate change impacts on wind and water erosion on US rangelands. J. Soil Water Conserv. 2019, 74, 405–418. [Google Scholar] [CrossRef]
- Fang, H.; Cheng, S.; Zhang, X.; Liang, A.; Yang, X.; Drury, C. Impact of soil redistribution in a sloping landscape on carbon sequestration in Northeast China. Land Degrad. Dev. 2006, 17, 89–96. [Google Scholar] [CrossRef]
- Fang, H.; Sun, L.; Qi, D.; Cai, Q. Using 137Cs technique to quantify soil erosion and deposition rates in an agricultural catchment in the black soil region, Northeast China. Geomorphology 2012, 169, 142–150. [Google Scholar] [CrossRef]
- Porto, P.; Walling, D.E. Validating the use of 137Cs and 210Pbex measurements to estimate rates of soil loss from cultivated land in southern Italy. J. Environ. Radioact. 2012, 106, 47–57. [Google Scholar] [CrossRef]
- Collins, A.; Pulley, S.; Foster, I.D.; Gellis, A.; Porto, P.; Horowitz, A. Sediment source fingerprinting as an aid to catchment management: A review of the current state of knowledge and a methodological decision-tree for end-users. J. Environ. Manag. 2017, 194, 86–108. [Google Scholar] [CrossRef]
- Owens, P.N.; Blake, W.H.; Gaspar, L.; Gateuille, D.; Koiter, A.; Lobb, D.A.; Petticrew, E.L.; Reiffarth, D.; Smith, H.G.; Woodward, J. Fingerprinting and tracing the sources of soils and sediments: Earth and ocean science, geoarchaeological, forensic, and human health applications. Earth-Sci. Rev. 2016, 162, 1–23. [Google Scholar] [CrossRef]
- Van Oost, K.; Quine, T.; Govers, G.; De Gryze, S.; Six, J.; Harden, J.; Ritchie, J.; McCarty, G.; Heckrath, G.; Kosmas, C. The impact of agricultural soil erosion on the global carbon cycle. Science 2007, 318, 626–629. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of conservation agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Basher, L.; Ross, C. Soil erosion rates under intensive vegetable production on clay loam, strongly structured soils at Pukekohe, New Zealand. Soil Res. 2002, 40, 947–961. [Google Scholar] [CrossRef]
- Golosov, V.; Belyaev, V.; Markelov, M. Application of Chernobyl-derived 137Cs fallout for sediment redistribution studies: Lessons from European Russia. Hydrol. Process. 2013, 27, 781–794. [Google Scholar] [CrossRef]
- Belyaev, V.; Golosov, V.; Markelov, M.; Evrard, O.; Ivanova, N.; Paramonova, T.; Shamshurina, E. Using Chernobyl-derived 137Cs to document recent sediment deposition rates on the River Plava floodplain (Central European Russia). Hydrol. Process. 2013, 27, 807–821. [Google Scholar] [CrossRef]
- Batista, P.V.; Davies, J.; Silva, M.L.; Quinton, J.N. On the evaluation of soil erosion models: Are we doing enough? Earth-Sci. Rev. 2019, 197, 102898. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiong, D.; Wu, H.; Liu, L.; Li, W.; Chidi, C.L.; Dahal, N.M.; Neupane, N. Using 137 Cs and 210 Pb ex to trace soil erosion rates for a small catchment in the mid-hills of Nepal. J. Soils Sediments 2021, 21, 403–418. [Google Scholar] [CrossRef]
- Zhang, X. Evaluating and improving cesium-137 technology for estimating soil redistribution using soil loss data measured during 1954–2015. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 14–19 April 2024; p. 4180. [Google Scholar]
- Porto, P.; Callegari, G. Comparing long-term observations of sediment yield with estimates of soil erosion rate based on recent 137Cs measurements. Results from an experimental catchment in Southern Italy. Hydrol. Process. 2022, 36, e14663. [Google Scholar] [CrossRef]
- Porto, P.; Walling, D.E.; Capra, A. Using 137Cs and 210Pbex measurements and conventional surveys to investigate the relative contributions of interrill/rill and gully erosion to soil loss from a small cultivated catchment in Sicily. Soil Tillage Res. 2014, 135, 18–27. [Google Scholar] [CrossRef]
- Meusburger, K.; Mabit, L.; Ketterer, M.; Park, J.-H.; Sandor, T.; Porto, P.; Alewell, C. A multi-radionuclide approach to evaluate the suitability of 239+ 240Pu as soil erosion tracer. Sci. Total Environ. 2016, 566, 1489–1499. [Google Scholar] [CrossRef]
- Guan, Y.-J.; Chen, W.; Wang, S.-Z.; Hua, Y.-X.; Jing, Q.-Y.; Liu, Z.-Y.; Huang, C.-P.; Wang, D.-Y.; Wang, H.-J.; He, X.-W. First application of plutonium in soil erosion research on terraces. Nucl. Sci. Tech. 2023, 34, 51. [Google Scholar] [CrossRef]
- Meusburger, K.; Porto, P.; Kobler Waldis, J.; Alewell, C. Validating plutonium-239+ 240 as a novel soil redistribution tracer–a comparison to measured sediment yield. Soil 2023, 9, 399–409. [Google Scholar] [CrossRef]
- Kumar, S.; Raj, A.D.; Mariappan, S. Fallout radionuclides (FRNs) for measuring soil erosion in the Himalayan region: A versatile and potent method for steep sloping hilly and mountainous landscapes. Catena 2024, 234, 107591. [Google Scholar] [CrossRef]
- Alewell, C.; Borrelli, P.; Meusburger, K.; Panagos, P. Using the USLE: Chances, challenges and limitations of soil erosion modelling. Int. Soil Water Conserv. Res. 2019, 7, 203–225. [Google Scholar] [CrossRef]
- Dicen, G.; Guillevic, F.; Gupta, S.; Chaboche, P.-A.; Meusburger, K.; Sabatier, P.; Evrard, O.; Alewell, C. Distribution and sources of fallout 137 Cs and 239+ 240 Pu in equatorial and Southern Hemisphere reference soils. Earth Syst. Sci. Data Discuss. 2024, 2024, 1–31. [Google Scholar]
- Sims, N.; Green, C.; Newnham, G.; England, J.; Held, A.; Wulder, M.; Herold, M.; Cox, S.; Huete, A.; Kumar, L. Good Practice Guidance. SDG Indicator 15.3. 1, Proportion of Land that Is Degraded over Total Land Area; United Nations Convention to Combat Desertification (UNCCD): Bonn, Germany, 2017. [Google Scholar]
- UN-Habitat. SDG Indicator Metadata; United Nations: Nairobi, Kenya, 2021. [Google Scholar]
- Moustakim, M.; Benmansour, M.; Nouira, A.; Benkdad, A.; Damnati, B. Caesium-137 re-sampling approach and excess Lead-210 sediment dating to assess the impacts of climate change and agricultural practices on soil erosion and sedimentation in Northwest Morocco. Environ. Earth Sci. 2022, 81, 278. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiong, D.; Wu, H.; Zhang, S.; Zhang, B.; Dahal, N.M.; Liu, L.; Li, W.; Zhang, W.; Shi, L. Spatial variation of soil physical properties and its relationship with plant biomass in degraded slopes in dry-hot valley region of Southwest China. J. Soils Sediments 2020, 20, 2354–2366. [Google Scholar] [CrossRef]
- Quijano, L.; Gaspar, L.; Navas, A. Spatial patterns of SOC, SON, 137Cs and soil properties as affected by redistribution processes in a Mediterranean cultivated field (Central Ebro Basin). Soil Tillage Res. 2016, 155, 318–328. [Google Scholar] [CrossRef]
- Lepage, H.; Nicoulaud-Gouin, V.; Pele, K.; Boyer, P. Use of machine learning and deep learning to predict particulate 137Cs concentrations in a nuclearized river. J. Environ. Radioact. 2023, 270, 107294. [Google Scholar] [CrossRef]
- Cheikha, L.B.; El Asmi, A.M.; Gdiri, A.; Oueslati, M.; Attia, R.; Rhouma, A.B.; Aouadi, T.; Jaoued, M.; Gueddari, M. Soil erosion rates evaluation via 137Cs and RUSLE modeling in the Sigilil watershed (northeastern Tunisia). Geoderma Reg. 2023, 35, e00714. [Google Scholar] [CrossRef]
- Bhatia, H.; Carpenter, T.S.; Ingólfsson, H.I.; Dharuman, G.; Karande, P.; Liu, S.; Oppelstrup, T.; Neale, C.; Lightstone, F.C.; Van Essen, B. Machine-learning-based dynamic-importance sampling for adaptive multiscale simulations. Nat. Mach. Intell. 2021, 3, 401–409. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, C.; Zheng, J. Batch Bayesian optimization via adaptive local search. Appl. Intell. 2021, 51, 1280–1295. [Google Scholar] [CrossRef]
- Masaba, K.; Li, A.Q. Multi-Robot Adaptive Sampling based on Mixture of Experts Approach to Modeling Non-Stationary Spatial Fields. In Proceedings of the 2023 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), Boston, MA, USA, 4–5 December 2023; pp. 191–198. [Google Scholar]
- Mancini, M.; Winzeler, H.E.; Blackstock, J.; Owens, P.R.; Miller, D.M.; Silva, S.H.; Ashworth, A.J. Pixel-based spatiotemporal statistics from remotely sensed imagery improves spatial predictions and sampling strategies of alluvial soils. Geoderma 2024, 447, 116919. [Google Scholar] [CrossRef]
- Yu, D.; Zha, Y.; Shi, L.; Bolotov, A.; Tso, C.-H.M. Spatiotemporal sampling strategy for characterization of hydraulic properties in heterogeneous soils. Stoch. Environ. Res. Risk Assess. 2021, 35, 737–757. [Google Scholar] [CrossRef]
- Banzak, O.V.; Sieliykov, O.V.; Olenev, M.V.; Dobrovolskaya, S.V.; Konovalenko, O.I. Research Processes of Gamma Radiation Detector for Developing a Portable Digital Spectrometer. Collect. Sci. Work. Mil. Inst. Kyiv Natl. Taras Shevchenko Univ. 2020, 69, 5–12. [Google Scholar] [CrossRef]
- Ramos, J.; Gottberg, A.; Augusto, R.; Mendonca, T.; Riisager, K.; Seiffert, C.; Bowen, P.; Senos, A.; Stora, T. Target nanomaterials at CERN-ISOLDE: Synthesis and release data. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2016, 376, 81–85. [Google Scholar] [CrossRef]
- Lanzirotti, A.; Tappero, R.; Schulze, D.G. Practical Application of Synchrotron-Based Hard X-Ray Microprobes in Soil Sciences. In Synchrotron-Based Techniques in Soils and Sediments; Elsevier: Amsterdam, The Netherlands, 2010; pp. 27–72. [Google Scholar]
- Tims, S.; Hancock, G.; Wacker, L.; Fifield, L.K. Measurements of Pu and Ra isotopes in soils and sediments by AMS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2004, 223, 796–801. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Q.; Yao, Q.; Huo, Y.; Zhou, M.; Lu, Y. Multiple radionuclide identification using deep learning with channel attention module and visual explanation. Front. Phys. 2022, 10, 1036557. [Google Scholar] [CrossRef]
- Zhang, X.J. Evaluating and improving 137Cs technology for estimating soil erosion using soil loss data measured during 1954–2015. Earth-Sci. Rev. 2023, 247, 104619. [Google Scholar] [CrossRef]
- Guan, Y.; Cui, L.; Huang, C.; Guo, Z.; Fan, K.; Wang, H.; He, H.; Wang, D.; Liu, Z. Migration of Fallout Radionuclides and Soil Erosion of Hongsongwa Mountainous in China. ACS Earth Space Chem. 2024, 8, 1000–1010. [Google Scholar] [CrossRef]
- Shmilovitz, Y.; Marra, F.; Wei, H.; Argaman, E.; Nearing, M.; Goodrich, D.; Assouline, S.; Morin, E. Frequency analysis of storm-scale soil erosion and characterization of extreme erosive events by linking the DWEPP model and a stochastic rainfall generator. Sci. Total Environ. 2021, 787, 147609. [Google Scholar] [CrossRef] [PubMed]
- Epple, L.; Kaiser, A.; Schindewolf, M.; Eltner, A. Can the models keep up with the data? Possibilities of soil and soil surface assessment techniques in the context of process based soil erosion models–A Review. SOIL Discuss. 2021, 2021, 1–23. [Google Scholar]
- Ritchie, J.C.; McHenry, J.R. Application of radioactive fallout cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: A review. J. Environ. Qual. 1990, 19, 215–233. [Google Scholar] [CrossRef]
- Parsons, A.; Foster, I.D. What can we learn about soil erosion from the use of 137Cs? Earth-Sci. Rev. 2011, 108, 101–113. [Google Scholar] [CrossRef]
- Dercon, G.; Mabit, L.; Hancock, G.; Nguyen, M.; Dornhofer, P.; Bacchi, O.O.S.; Benmansour, M.; Bernard, C.; Froehlich, W.; Golosov, V. Fallout radionuclide-based techniques for assessing the impact of soil conservation measures on erosion control and soil quality: An overview of the main lessons learnt under an FAO/IAEA Coordinated Research Project. J. Environ. Radioact. 2012, 107, 78–85. [Google Scholar] [CrossRef]
- Loba, A.; Waroszewski, J.; Sykuła, M.; Kabala, C.; Egli, M. Meteoric 10Be, 137Cs and 239+ 240Pu as tracers of long-and medium-term soil erosion—A review. Minerals 2022, 12, 359. [Google Scholar] [CrossRef]
- Huang, X.; Wang, K.-R.; Zou, Y.-w.; Cao, X.-C. Development of global soil erosion research at the watershed scale: A bibliometric analysis of the past decade. Environ. Sci. Pollut. Res. 2021, 28, 12232–12244. [Google Scholar] [CrossRef]
- Yuan, Y.; Xiong, D.; Zhang, Y.; Zhang, B.; Zhang, W.; Zhang, X. A model on changes in 210Pbex depth distribution for non-eroded abandoned farmland. Geoderma 2022, 424, 116020. [Google Scholar] [CrossRef]
- Kantsepolsky, B.; Aviv, I. Quantum Sensing for the Cities of the Future. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2024, 48, 93–100. [Google Scholar] [CrossRef]
- Rani, N.; Singh, P.; Kumar, S.; Kumar, P.; Bhankar, V.; Kamra, N.; Kumar, K. Recent advancement in nanomaterials for the detection and removal of uranium: A review. Environ. Res. 2023, 234, 116536. [Google Scholar] [CrossRef]
- Liu, R.; Gao, M.; Wang, L.; Wang, X.; Xiang, Y.; Zhang, A.; Xia, J.; Chen, Y.; Chen, S. Interactive extended reality techniques in information visualization. IEEE Trans. Hum.-Mach. Syst. 2022, 52, 1338–1351. [Google Scholar] [CrossRef]
Dimension | Advantages of Radionuclide Tracers | Advantages of Methods | Integrated Enhancement |
---|---|---|---|
Spatial coverage | Cumulative, long-term spatial information | Large-scale monitoring | Enhanced spatiotemporal extrapolation across large regions |
Temporal scale | Decadal records of sediment deposition | Short-term field observations | Capturing short-term pulses and long-term trends |
Data accuracy | High-resolution, particle-level tracing | Detailed soil physicochemical and profile data | Reduced measurement uncertainty |
Modeling capability | Empirical calibration and physically based models | Process-based simulation and forecasting | Improved model accuracy and generalizability |
References | Review | Data Sources | Temporal Coverage | Analytical Tools | Bibliometric Metrics | Research Gaps | Key Contributions |
---|---|---|---|---|---|---|---|
[97] | ✓ | Low time resolution, signal degradation needs correction | Established the first quantitative erosion/sedimentation model for 137Cs and verified its high correlation with USLE | ||||
[9] | ✓ | Cross-scale upscaling and uncertainty propagation | Clear; side-by-side appraisal of 137Cs/210Pb_ex/7Be advantages and limitations | ||||
[12] | ✓ | Insufficient treatment of post-depositional migration and grain size selectivity | Demonstrated the first integration of 7Be–137Cs for quantitative comparison of short-term and long-term soil erosion rates. | ||||
[98] | ✓ | Lack of alternative radionuclide tracers and models | The system refutes the four major assumptions of 137Cs tracing and questions the reliability of its erosion rate estimates for the first time | ||||
[99] | ✓ | CRP Project Multi-Country Measured Data | covering the CRP period 2002–2008 | FRN settlement space varies greatly, and quality control needs improvement. | Summarize the results of the IAEA/FAO CRP project, standardize multi-radionuclide methods and models, and promote FRN tracer standardization | ||
[100] | ✓ | 59 relevant documents | Insufficient data coverage and model validation (Be2D, LODO, etc.) | Comparing the application differences between 10Be, 137Cs, and 239 + 240Pu, proposing a multi-radionuclide joint tracing and Pu substitution strategy | |||
This Research | ✓ | WoS database (1692 relevant studies worldwide) | 2000–2023 | Bibliometrix + VOSviewer + CiteSpace | PageRank, betweenness centrality, H-index, G-index, M-index, MCP, SCP | (1) Citation metrics (H-index, G-index) are affected by update lags, potentially underestimating recent high-impact studies; (2) analysis is limited to English-language WoS Core Collection records, excluding non-English and gray literature | (1) Applied a Bibliometrix–VOSviewer–CiteSpace triad to achieve multi-level bibliometric analysis beyond single-tool reviews; (2) mapped global research patterns and linked traditional tracers with emerging methods to capture dynamic field evolution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Yuan, Y.; Xue, Y.; Guo, J.; Zeng, W.; Chen, Y.; Chen, K. Radionuclide Tracing in Global Soil Erosion Studies: A Bibliometric and Systematic Review. Water 2025, 17, 2652. https://doi.org/10.3390/w17172652
Huang Y, Yuan Y, Xue Y, Guo J, Zeng W, Chen Y, Chen K. Radionuclide Tracing in Global Soil Erosion Studies: A Bibliometric and Systematic Review. Water. 2025; 17(17):2652. https://doi.org/10.3390/w17172652
Chicago/Turabian StyleHuang, Yinhong, Yong Yuan, Yang Xue, Jinjin Guo, Wen Zeng, Yajuan Chen, and Kun Chen. 2025. "Radionuclide Tracing in Global Soil Erosion Studies: A Bibliometric and Systematic Review" Water 17, no. 17: 2652. https://doi.org/10.3390/w17172652
APA StyleHuang, Y., Yuan, Y., Xue, Y., Guo, J., Zeng, W., Chen, Y., & Chen, K. (2025). Radionuclide Tracing in Global Soil Erosion Studies: A Bibliometric and Systematic Review. Water, 17(17), 2652. https://doi.org/10.3390/w17172652