Characteristics of Spatial–Temporal Variations and Controlling Factors of Chemical Weathering in the Han River Basin
Abstract
1. Introduction
2. Study Area
2.1. Climate and Hydrology
2.2. Geologic Setting
3. Sampling and Analysis
4. Results
4.1. Physico-Chemical Parameters
4.2. Major Ions Composition
5. Discussion
5.1. Source of Major Ions
5.1.1. Atmospheric Inputs
5.1.2. Anthropogenic Activities
5.1.3. Rock Weathering
Silicate Weathering Input
Carbonate Weathering Input
5.2. Chemical Weathering Rate
5.3. CO2 Consumption Rate
5.4. Factors Influencing Chemical Weathering in the HRB
5.5. Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Berner, E.K.; Berner, R.A. Global Environment: Water, Air, and Geochemical Cycles, 2nd ed.; Princeton University Press: Princeton, NJ, USA, 2012. [Google Scholar]
- Stallard, R.F.; Edmond, J.M. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. 1983, 88, 9671–9688. [Google Scholar] [CrossRef]
- Berner, R.A.; Lasaga, A.C.; Garrels, R.M. The carbonate-silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 1983, 283, 641–683. [Google Scholar] [CrossRef]
- Berner, R.A. The Phanerozoic Carbon Cycle: CO2 and O2; Oxford University Press: New York, NY, USA, 2004. [Google Scholar] [CrossRef]
- Walker, J.C.G.; Hays, P.B.; Kasting, J.F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 1981, 86, 9776–9782. [Google Scholar] [CrossRef]
- Brantley, S.L.; Goldhaber, M.B.; Ragnarsdottir, K.V. Crossing disciplines and scales to understand the critical zone. Elements 2007, 3, 307–314. [Google Scholar] [CrossRef]
- Ciais, P.; Sabine, C.; Bala, G.; Bopp, L.; Brovkin, V.; Al., E.; House, J.I. Carbon and other biogeochemical cycles. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., et al., Eds.; Cambridge University Press: Cambridge, UK,, 2014; pp. 465–570. [Google Scholar]
- Hartmann, J.; Jansen, N.; Dürr, H.H.; Kempe, S.; Köhler, P. Global CO2-consumption by chemical weathering: What is the contribution of highly active weathering regions? Glob. Planet. Change 2009, 69, 185–194. [Google Scholar] [CrossRef]
- Regnier, P.; Friedlingstein, P.; Ciais, P.; Mackenzie, F.T.; Gruber, N.; Janssens, I.A.; Laruelle, G.G.; Lauerwald, R.; Luyssaert, S.; Andersson, A.J.; et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 2013, 6, 597–607. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hamilton, S.K. Anthropogenic influences on riverine fluxes of dissolved inorganic carbon to the oceans: Riverine fluxes of inorganic carbon to the oceans. Limnol. Oceanogr. Lett. 2018, 3, 143–155. [Google Scholar] [CrossRef]
- Torres, M.A.; West, A.J.; Li, G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature 2014, 507, 346–349. [Google Scholar] [CrossRef]
- Goudie, A.S.; Viles, H.A. Weathering and the global carbon cycle: Geomorphological perspectives. Earth-Sci. Rev. 2012, 113, 59–71. [Google Scholar] [CrossRef]
- White, A.F.; Blum, A.E. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 1995, 59, 1729–1747. [Google Scholar] [CrossRef]
- Chai, N.; Zhao, Z.; Li, X.; Xiao, J.; Jin, Z. Chemical weathering processes in the Chinese Loess Plateau. Geosci. Front. 2024, 15, 101842. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, J.; Zhang, D.; Li, X.; Wu, J.; Ding, H.; Zhao, Z. Chemical weathering characteristics and controls in the Yarlung Tsangpo River basin: Evidence from hydrochemical composition. Appl. Geochem. 2022, 146, 105479. [Google Scholar] [CrossRef]
- West, A.; Galy, A.; Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 2005, 235, 211–228. [Google Scholar] [CrossRef]
- Moon, S.; Chamberlain, C.P.; Hilley, G.E. New estimates of silicate weathering rates and their uncertainties in global rivers. Geochim. Cosmochim. Acta 2014, 134, 257–274. [Google Scholar] [CrossRef]
- Tipper, E.T.; Bickle, M.J.; Galy, A.; West, A.J.; Pomiès, C.; Chapman, H.J. The short term climatic sensitivity of carbonate and silicate weathering fluxes: Insight from seasonal variations in river chemistry. Geochim. Cosmochim. Acta 2006, 70, 2737–2754. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, G.; Keys, L.; Li, F.; Yan, N.; Qu, D.; Liu, X. Seasonal variation of chemical weathering and its controlling factors in two alpine catchments, Nam Co Basin, central Tibetan Plateau. J. Hydrol. 2019, 576, 381–395. [Google Scholar] [CrossRef]
- Spence, J.; Telmer, K. The role of sulfur in chemical weathering and atmospheric CO2 fluxes: Evidence from major ions, δ13cdic, and δ34sso4 in rivers of the Canadian Cordillera. Geochim. Cosmochim. Acta 2005, 69, 5441–5458. [Google Scholar] [CrossRef]
- Goudie, A.S. The Schmidt hammer in geomorphological research. Prog. Phys. Geogr. 2006, 30, 703–718. [Google Scholar] [CrossRef]
- Kuo, Y.; Liu, W.; Zhao, E.; Li, R.; Muñoz-Carpena, R. Water quality variability in the middle and down streams of Han River under the influence of the middle route of the south-north water diversion project, China. J. Hydrol. 2019, 569, 218–229. [Google Scholar] [CrossRef]
- Dar, T.; Rai, N.; Kumar, S.; Bhat, M.A. Geochemistry of dissolved loads and chemical weathering in the upper Jhelum River Basin (UJRB) of western Himalayas: Isotopic and chemical constraints. Appl. Geochem. 2023, 155, 105724. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, J.; Evaristo, J.; Li, Z. Spatiotemporal variations in the hydrochemical characteristics and controlling factors of streamflow and groundwater in the Wei River of China. Environ. Pollut. 2019, 254 Pt A, 113006. [Google Scholar] [CrossRef]
- Deng, L.; Chen, K.; Liu, Z.; Wu, B.; Chen, Z.; He, S. Spatiotemporal variation evaluation of water quality in middle and lower Han River, China. Sci. Rep. 2022, 12, 14125. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Zehnder, A.J.B. The South-North Water Transfer Project in China: An analysis of water demand uncertainty and environmental objectives in decision making. Water Int. 2005, 30, 339–349. [Google Scholar] [CrossRef]
- Yuan, J.; Zhao, B.; Zhang, Q. Transformation and source identification of n in the upper reaches of the Han River basin, China: Evaluated by a stable isotope approach. Environ. Monit. Assess. 2019, 191, 475. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, W.; Zhao, C.; Zheng, R.; Cui, Z.; Wang, X.; Wang, Y. Analysis of water quality based on physical and chemical data in Hanjiang River basin (China). In Proceedings of the 2017 6th International Conference on Energy, Environment and Sustainable Development (ICEESD 2017), Zhuhai, China, 11–12 March 2017; Atlantis Press: Dordrecht, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Deng, Z.; Zhang, X.; Li, D.; Pan, G. Simulation of land use/land cover change and its effects on the hydrological characteristics of the upper reaches of the Hanjiang basin. Environ. Earth Sci. 2015, 73, 1119–1132. [Google Scholar] [CrossRef]
- Xu, Z.; Shi, C.; Tang, Y.; Han, H. Chemical and strontium isotopic compositions of the Hanjiang basin rivers in China: Anthropogenic impacts and chemical weathering. Aquat. Geochem. 2011, 17, 243–264. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q. Geochemistry of the upper Han River basin, China, 1: Spatial distribution of major ion compositions and their controlling factors. Appl. Geochem. 2008, 23, 3535–3544. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, Z.; Shen, Z.; Li, S.; Wang, S. The Han River watershed management initiative for the South-to-North Water Transfer Project (middle route) of China. Environ. Monit. Assess. 2009, 148, 369–377. [Google Scholar] [CrossRef]
- Galy, A.; France-Lanord, C. Weathering processes in the Ganges–Brahmaputra Basin and the riverine alkalinity budget. Chem. Geol. 1999, 159, 31–60. [Google Scholar] [CrossRef]
- Stallard, R.F.; Edmond, J.M. Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J. Geophys. Res. 1981, 86, 9844–9858. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z. Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Li, S.; Chetelat, B.; Yue, F.; Zhao, Z.; Liu, C. Chemical weathering processes in the Yalong River draining the eastern Tibetan Plateau, China. J. Asian Earth Sci. 2014, 88, 74–84. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Liu, X.; Bao, L. Identification of dissolved sulfate sources and the role of sulfuric acid in carbonate weathering using dual-isotopic data from the Jialing River, southwest China. J. Asian Earth Sci. 2011, 42, 370–380. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Q. Geochemistry of the upper Han River basin, China. 2: Seasonal variations in major ion compositions and contribution of precipitation chemistry to the dissolved load. J. Hazard. Mater. 2009, 170, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, F.; Xia, X.; Zhang, L. Major element chemistry of the Changjiang (Yangtze river). Chem. Geol. 2002, 187, 231–255. [Google Scholar] [CrossRef]
- Chetelat, B.; Liu, C.; Zhao, Z.Q.; Wang, Q.L.; Li, S.L.; Li, J.; Wang, B.L. Geochemistry of the dissolved load of the Changjiang basin rivers: Anthropogenic impacts and chemical weathering. Geochim. Cosmochim. Acta 2008, 72, 4254–4277. [Google Scholar] [CrossRef]
- Liu, H.; Jacob, D.J.; Bey, I.; Yantosca, R.M.; Duncan, B.N.; Sachse, G.W. Transport pathways for asian pollution outflow over the Pacific: Interannual and seasonal variations. J. Geophys. Res. 2003, 108, 8786. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, H.; Liu, L.; Zhai, T.; Zhang, X. Multiple isotopes reveal the driving mechanism of high NO3- level and key processes of nitrogen cycling in the lower reaches of Yellow River. J. Environ. Sci. 2024, 138, 597–606. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, W.W.; Létolle, R.; Jusserand, C. Major element chemistry of the Huanghe (Yellow River), China-weathering processes and chemical fluxes. J. Hydrol. 1995, 168, 173–203. [Google Scholar] [CrossRef]
- Moore, C.M.; Mills, M.M.; Arrigo, K.R.; Berman-Frank, I.; Bopp, L.; Boyd, P.W.; Galbraith, E.D.; Geider, R.J.; Guieu, C.; Jaccard, S.L.; et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 2013, 6, 701–710. [Google Scholar] [CrossRef]
- Anderson, S.P.; Dietrich, W.E. Chemical weathering and runoff chemistry in a steep headwater catchment. Hydrol. Process. 2001, 15, 1791–1815. [Google Scholar] [CrossRef]
- Larsen, I.J.; Montgomery, D.R.; Greenberg, H.M. The contribution of mountains to global denudation. Geology 2014, 42, 527–530. [Google Scholar] [CrossRef]
- France-Lanord, C.; Evans, M.; Hurtrez, J.; Riotte, J. Annual dissolved fluxes from Central Nepal rivers: Budget of chemical erosion in the Himalayas. Comptes Rendus Geosci. 2003, 335, 1131–1140. [Google Scholar] [CrossRef]
- Raymo, M.E.; Ruddiman, W.F. Tectonic forcing of late Cenozoic climate. Nature 1992, 359, 117–122. [Google Scholar] [CrossRef]
- Carretier, S.; Goddéris, Y.; Martinez, J.; Reich, M.; Martinod, P. Colluvial deposits as a possible weathering reservoir in uplifting mountains. Earth Surf. Dyn. 2018, 6, 217–237. [Google Scholar] [CrossRef]
- Bilham, R. Lessons from the Haiti Earthquake. Nature 2010, 463, 878–879. [Google Scholar] [CrossRef]
- Burbank, D.W. The chronology of intermontane-basin development in the northwestern Himalaya and the evolution of the northwest syntaxis. Earth Planet. Sci. Lett. 1983, 64, 77–92. [Google Scholar] [CrossRef]
- Karim, M.M. Arsenic in groundwater and health problems in Bangladesh. Water Res. 2000, 34, 304–310. [Google Scholar] [CrossRef]
- Wolff-Boenisch, D.; Gabet, E.J.; Burbank, D.W.; Langner, H.; Putkonen, J. Spatial variations in chemical weathering and CO2 consumption in Nepalese High Himalayan Catchments during the monsoon season. Geochim. Cosmochim. Acta 2009, 73, 3148–3170. [Google Scholar] [CrossRef]
- Dupré, B.; Dessert, C.; Oliva, P.; Goddéris, Y.; Viers, J.; François, L.; Millot, R.; Gaillardet, J. Rivers, chemical weathering and Earth’s climate. Comptes Rendus Geosci. 2003, 335, 1141–1160. [Google Scholar] [CrossRef]
- Bluth, G.J.S.; Kump, L.R. Lithologic and climatologic controls of river chemistry. Geochim. Cosmochim. Acta 1994, 58, 2341–2359. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef] [PubMed]
- Kump, L.R.; Brantley, S.L.; Arthur, M.A. Chemical weathering, atmospheric CO2, and climate. Annu. Rev. Earth Planet. Sci. 2000, 28, 611–667. [Google Scholar] [CrossRef]
- Raymond, P.A. Temperature versus hydrologic controls of chemical weathering fluxes from United States Forests. Chem. Geol. 2017, 458, 1–13. [Google Scholar] [CrossRef]
- Singh, S.K.; Sarin, M.M.; France-Lanord, C. Chemical erosion in the eastern Himalaya: Major ion composition of the Brahmaputra and δ13C of dissolved inorganic carbon. Geochim. Cosmochim. Acta 2005, 69, 3573–3588. [Google Scholar] [CrossRef]
- Yde, J.C.; Knudsen, N.T.; Hasholt, B.; Mikkelsen, A.B. Meltwater chemistry and solute export from a Greenland ice sheet catchment, Watson River, west Greenland. J. Hydrol. 2014, 519, 2165–2179. [Google Scholar] [CrossRef]
- Riebe, C.S.; Kirchner, J.W.; Finkel, R.C. Sharp decrease in long-term chemical weathering rates along an altitudinal transect. Earth Planet. Sci. Lett. 2004, 218, 421–434. [Google Scholar] [CrossRef]
- Millot, R.; Gaillardet, J.; Dupré, B.; Allègre, C.J. The global control of silicate weathering rates and the coupling with physical erosion: New insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 2002, 196, 83–98. [Google Scholar] [CrossRef]
- Gabet, E.J.; Wolff-Boenisch, D.; Langner, H.; Burbank, D.W.; Putkonen, J. Geomorphic and climatic controls on chemical weathering in the high Himalayas of Nepal. Geomorphology 2010, 122, 205–210. [Google Scholar] [CrossRef]
Sample | WT | pH | EC | TDS | Ca2+ | Mg2+ | K+ | Na+ | Cl− | SO42− | HCO3− | NO3− | Si | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | μs/cm | mg/L | ||||||||||||
Spring | ||||||||||||||
Mainstream | min | 10.7 | 8.2 | 215.0 | 202.7 | 33.5 | 7.8 | 2.4 | 4.9 | 2.9 | 18.4 | 116.9 | 4.5 | 0.1 |
max | 20.0 | 9.1 | 370.0 | 325.7 | 50.7 | 13.8 | 3.9 | 20.1 | 16.1 | 39.6 | 198.3 | 8.7 | 0.3 | |
ave | 14.8 | 8.6 | 287.5 | 276.0 | 44.9 | 10.3 | 3.2 | 10.5 | 7.9 | 27.2 | 163.2 | 5.9 | 0.2 | |
Tributary | min | 7.7 | 8.2 | 96.0 | 105.5 | 17.0 | 2.1 | 1.4 | 2.5 | 0.8 | 9.2 | 64.8 | 0.2 | 0.2 |
max | 20.0 | 9.1 | 796.3 | 775.4 | 97.3 | 38.7 | 9.7 | 72.2 | 117.4 | 227.9 | 305.0 | 16.1 | 4.8 | |
ave | 13.4 | 8.5 | 284.0 | 279.6 | 42.9 | 10.4 | 3.8 | 13.2 | 13.0 | 36.3 | 152.6 | 4.6 | 2.7 | |
WS-1 | wastewater | 16.0 | 7.9 | 638.3 | 547.4 | 74.6 | 8.9 | 18.0 | 52.3 | 75.4 | 64.9 | 227.5 | 19.3 | 6.7 |
Summer | ||||||||||||||
Mainstream | min | 23.0 | 7.7 | 120.6 | 185.8 | 33.0 | 5.5 | 2.0 | 4.2 | 2.3 | 15.1 | 106.1 | 1.4 | 0.7 |
max | 37.3 | 9.1 | 320.7 | 264.5 | 45.2 | 11.4 | 4.4 | 17.9 | 20.9 | 39.2 | 152.5 | 4.9 | 5.3 | |
ave | 29.6 | 8.3 | 227.9 | 228.3 | 40.0 | 8.0 | 2.6 | 7.6 | 6.4 | 23.5 | 133.1 | 3.4 | 3.6 | |
Tributary | min | 17.7 | 7.7 | 51.9 | 78.0 | 11.5 | 1.4 | 1.2 | 2.2 | 0.5 | 6.4 | 45.1 | 1.1 | 0.7 |
max | 34.3 | 9.2 | 488.0 | 472.9 | 76.6 | 22.7 | 6.3 | 25.8 | 34.5 | 75.3 | 244.0 | 6.9 | 6.4 | |
ave | 26.4 | 8.3 | 188.9 | 192.7 | 31.9 | 6.7 | 2.6 | 6.6 | 5.3 | 20.0 | 112.2 | 3.3 | 4.4 | |
WS-1 | wastewater | 29.2 | 7.4 | 648.0 | 450.2 | 58.5 | 7.9 | 16.4 | 53.2 | 64.5 | 55.7 | 148.8 | 35.7 | 9.4 |
Autumn | ||||||||||||||
Mainstream | min | 10.9 | 7.8 | 227.0 | 213.7 | 36.3 | 5.5 | 1.5 | 3.1 | 1.7 | 15.6 | 134.7 | 1.9 | 2.0 |
max | 25.0 | 8.6 | 376.0 | 367.7 | 56.8 | 13.5 | 3.6 | 17.8 | 25.3 | 36.8 | 203.6 | 9.7 | 5.7 | |
ave | 16.3 | 8.1 | 281.1 | 262.4 | 45.2 | 8.4 | 2.1 | 7.4 | 6.5 | 23.7 | 159.2 | 5.4 | 4.5 | |
Tributary | min | 7.0 | 7.8 | 92.0 | 103.5 | 16.3 | 2.3 | 1.0 | 2.2 | 0.6 | 7.2 | 64.5 | 1.7 | 1.4 |
max | 25.0 | 9.0 | 629.0 | 521.3 | 82.1 | 19.6 | 5.2 | 31.0 | 56.4 | 119.0 | 272.4 | 17.1 | 5.7 | |
ave | 13.8 | 8.2 | 259.4 | 246.2 | 41.4 | 7.9 | 2.3 | 7.4 | 7.6 | 23.5 | 147.2 | 4.9 | 4.0 | |
WS-1 | wastewater | 15.3 | 7.8 | 778.7 | 554.6 | 64.9 | 9.1 | 11.2 | 66.4 | 81.3 | 64.1 | 186.4 | 62.5 | 8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, N.; Zhang, J.-W.; He, M.-L.; Zhang, D.; Fu, Y.-C.; Zhang, G.-S.; Zhao, Z.-Q. Characteristics of Spatial–Temporal Variations and Controlling Factors of Chemical Weathering in the Han River Basin. Water 2025, 17, 2624. https://doi.org/10.3390/w17172624
Wu N, Zhang J-W, He M-L, Zhang D, Fu Y-C, Zhang G-S, Zhao Z-Q. Characteristics of Spatial–Temporal Variations and Controlling Factors of Chemical Weathering in the Han River Basin. Water. 2025; 17(17):2624. https://doi.org/10.3390/w17172624
Chicago/Turabian StyleWu, Na, Jun-Wen Zhang, Mei-Li He, Dong Zhang, Yu-Cong Fu, Gui-Shan Zhang, and Zhi-Qi Zhao. 2025. "Characteristics of Spatial–Temporal Variations and Controlling Factors of Chemical Weathering in the Han River Basin" Water 17, no. 17: 2624. https://doi.org/10.3390/w17172624
APA StyleWu, N., Zhang, J.-W., He, M.-L., Zhang, D., Fu, Y.-C., Zhang, G.-S., & Zhao, Z.-Q. (2025). Characteristics of Spatial–Temporal Variations and Controlling Factors of Chemical Weathering in the Han River Basin. Water, 17(17), 2624. https://doi.org/10.3390/w17172624