Enhanced Physics-Informed Neural Networks for Deep Tunnel Seepage Field Prediction: A Bayesian Optimization Approach
Abstract
1. Introduction
2. Methodology: Enhanced PINN Framework
2.1. Mathematical Model and Analytical Solution of Tunnel Seepage Field
- (1)
- The surrounding rock is homogeneous and porous, forming a continuous medium;
- (2)
- Groundwater is incompressible, and the seepage behavior is steady-state.
2.2. Enhanced PINN Framework Based on ADF Trial Functions
2.3. Bayesian Optimization and Three-Stage Collaborative Training
3. Experimental Configuration
3.1. Problem Configuration and Analytical Solution
3.2. Dataset Configuration
4. Results and Discussion
4.1. Enhanced PINN Prediction Performance Evaluation
4.2. Analysis of Measurement Point Density Impact on Model Robustness
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peck, R.B. Advantages and limitations of the observational method in applied soil mechanics. Géotechnique 1969, 19, 171–187. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Englewood Cliffs, NJ, USA, 1979. [Google Scholar]
- Anagnostou, G.; Kovári, K. Face stability conditions with earth-pressure-balanced shields. Tunn. Undergr. Space Technol. 1999, 14, 165–173. [Google Scholar] [CrossRef]
- Butscher, C. Steady-state groundwater inflow into a circular tunnel. Tunn. Undergr. Space Technol. 2012, 32, 158–167. [Google Scholar] [CrossRef]
- Goodman, R.E.; Moye, D.G.; van Schaikwyk, A.; Javandel, I. Ground water inflows during tunnel driving. Eng. Geol. 1965, 2, 39–56. [Google Scholar]
- Karlsrud, K. Water control when tunnelling under urban areas in the Oslo region. Tunn. Undergr. Space Technol. 2001, 16, 355–372. [Google Scholar]
- Gattinoni, P.; Scesi, L.; Terrana, S. Hydrogeological risk assessment in the Adda River valley (Central Alps, Italy) as a tool for tunnel design. Tunn. Undergr. Space Technol. 2014, 42, 11–18. [Google Scholar]
- Harr, M.E. Groundwater and Seepage; McGraw-Hill: New York, NY, USA, 1962. [Google Scholar]
- Lei, S. An analytical solution for steady flow into a tunnel. Ground Water 1999, 37, 23–26. [Google Scholar] [CrossRef]
- Bear, J. Hydraulics of Groundwater; Dover Publications: Mineola, NY, USA, 2007. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Shin, H.S.; Potts, D.M.; Zdravković, L. Three-dimensional modelling of NATM tunnelling in decomposed granite soil. Géotechnique 2002, 52, 187–200. [Google Scholar] [CrossRef]
- Anagnostou, G.; Perazzelli, P. The stability of a tunnel face in partially saturated soil above the water table. Tunn. Undergr. Space Technol. 2015, 46, 12–18. [Google Scholar]
- Strang, G.; Fix, G.J. An Analysis of the Finite Element Method; Wellesley-Cambridge Press: Wellesley, MA, USA, 2008. [Google Scholar]
- Rutqvist, J.; Stephansson, O. The role of hydromechanical coupling in fractured rock engineering. Hydrogeol. J. 2003, 11, 7–40. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, L.; Pan, J.; Li, X.; Sun, W.; Tian, S. Seepage Characteristics of Coal under Complex Mining Stress Environment Conditions. Energy Fuels 2024, 38, 16371–16384. [Google Scholar] [CrossRef]
- Vaganov, Y.V.; Kadyrov, M.A.; Drugov, D.A.; Tugushev, O.A. Contaminated water flow modelling through the porous media by using fractional advection-dispersion equation. Geol. Ecol. Landsc. 2023, 8, 489–497. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef] [PubMed]
- ASCE Task Committee on Application of Artificial Neural Networks in Hydrology. Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5, 115–123. [Google Scholar] [CrossRef]
- Sahoo, S.; Russo, T.A.; Elliott, J.; Foster, I. Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US. Water Resour. Res. 2017, 53, 3878–3895. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, W.; Li, C.; Ma, L.; Shi, X.; Li, H.; Zhu, H. Randomly generating realistic calcareous sand for directional seepage simulation using deep convolutional generative adversarial networks. J. Rock Mech. Geotech. Eng. 2025, in press. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, Q.; Luo, J.; Ma, X.; Liu, G. Characterizing Subsurface Structures From Hard and Soft Data With Multiple-Condition Fusion Neural Network. Water Resour. Res. 2024, 60, e2024WR038170. [Google Scholar] [CrossRef]
- Hu, D.; Hu, Y.; Hu, R.; Tan, Z.; Ni, P.; Chen, Y.; Liu, J. Machine Learning--Finite Element Mesh Optimization-Based Modeling and Prediction of Excavation-Induced Shield Tunnel Ground Settlement. Int. J. Comput. Methods 2025, 22, 2450066. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Cuomo, S.; Di Cola, V.S.; Giampaolo, F.; Rozza, G.; Raissi, M.; Piccialli, F. Scientific machine learning through physics–informed neural networks: Where we are and what’s next. J. Sci. Comput. 2022, 92, 88. [Google Scholar] [CrossRef]
- Shen, C. A transdisciplinary review of deep learning research and its relevance for water resources scientists. Water Resour. Res. 2018, 54, 8558–8593. [Google Scholar] [CrossRef]
- Bergen, K.J.; Johnson, P.A.; de Hoop, M.V.; Beroza, G.C. Machine learning for data-driven discovery in solid Earth geoscience. Science 2019, 363, eaau0323. [Google Scholar] [CrossRef]
- Tartakovsky, A.M.; Marrero, C.O.; Perdikaris, P.; Tartakovsky, G.D.; Barajas-Solano, D. Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resour. Res. 2020, 56, e2019WR026731. [Google Scholar] [CrossRef]
- He, Q.; Barajas-Solano, D.; Tartakovsky, G.; Tartakovsky, A.M. Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport. Adv. Water Resour. 2020, 141, 103610. [Google Scholar] [CrossRef]
- Mao, Z.; Jagtap, A.D.; Karniadakis, G.E. Physics-informed neural networks for high-speed flows. Comput. Methods Appl. Mech. Eng. 2020, 360, 112789. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Perdikaris, P. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets. Sci. Adv. 2021, 7, eabi8605. [Google Scholar] [CrossRef]
- Yu, J.; Lu, L.; Meng, X.; Karniadakis, G.E. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems. Comput. Methods Appl. Mech. Eng. 2022, 393, 114823. [Google Scholar] [CrossRef]
- McClenny, L.D.; Braga-Neto, U.M. Self-adaptive physics-informed neural networks using a soft attention mechanism. J. Comput. Phys. 2023, 474, 111722. [Google Scholar] [CrossRef]
- Sukumar, N.; Srivastava, A. Exact Imposition of Boundary Conditions with Distance Functions in Physics-Informed Deep Neural Networks. Comput. Methods Appl. Mech. Eng. 2022, 389, 114333. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, S.; Wang, Q. Extended analytical solutions for tunnel seepage with grouting effects in layered rock masses. Tunn. Undergr. Space Technol. 2021, 108, 103721. [Google Scholar]
- Li, P.; Wang, M. Closed-form solutions for groundwater flow to tunnels in multi-layered aquifer systems. J. Hydrol. 2022, 606, 127430. [Google Scholar]
- Wang, T.; Zhou, S. Advanced three-dimensional finite element modeling of tunnel seepage in fractured rock masses. Rock Mech. Rock Eng. 2022, 55, 4821–4838. [Google Scholar]
- Zhao, W.; Li, H.; Chen, M. Multi-scale finite element approach for tunnel seepage analysis in heterogeneous geological formations. Comput. Geotech. 2022, 142, 104563. [Google Scholar]
- Mo, L.; Zhang, P.; Wei, Q. Ensemble deep learning for tunnel water inflow prediction: A comparative study. J. Hydrol. 2022, 609, 127745. [Google Scholar]
- Anderson, D.; Wilson, M.; Clark, J. Critical assessment of machine learning performance in non-stationary groundwater systems. J. Hydrol. 2023, 615, 128645. [Google Scholar]
Configuration | Method | L2 Relative Error | Training Time (Seconds) |
---|---|---|---|
Config-1 | Standard PINN with Adam optimization only | 0.019551 ± 0.000648 | 374.96 ± 3.64 |
Config-2 | Standard PINN with Exponential Moving Average weight stabilization | 0.014207 ± 0.000926 | 377.82 ± 1.79 |
Config-3 | Config-2 + (RAR-D) | 0.009327 ± 0.000438 | 447.59 ± 0.72 |
Config-4 | Full framework including Bayesian hyperparameter optimization | 0.006264 ± 0.000374 | 1082.28 ± 33.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Zhang, Y.; Lu, Q.; Xia, P.; Qi, J.; Luo, Q. Enhanced Physics-Informed Neural Networks for Deep Tunnel Seepage Field Prediction: A Bayesian Optimization Approach. Water 2025, 17, 2621. https://doi.org/10.3390/w17172621
Pan Y, Zhang Y, Lu Q, Xia P, Qi J, Luo Q. Enhanced Physics-Informed Neural Networks for Deep Tunnel Seepage Field Prediction: A Bayesian Optimization Approach. Water. 2025; 17(17):2621. https://doi.org/10.3390/w17172621
Chicago/Turabian StylePan, Yiheng, Yongqi Zhang, Qiyuan Lu, Peng Xia, Jiarui Qi, and Qiqi Luo. 2025. "Enhanced Physics-Informed Neural Networks for Deep Tunnel Seepage Field Prediction: A Bayesian Optimization Approach" Water 17, no. 17: 2621. https://doi.org/10.3390/w17172621
APA StylePan, Y., Zhang, Y., Lu, Q., Xia, P., Qi, J., & Luo, Q. (2025). Enhanced Physics-Informed Neural Networks for Deep Tunnel Seepage Field Prediction: A Bayesian Optimization Approach. Water, 17(17), 2621. https://doi.org/10.3390/w17172621