Natural Radionuclides 222Rn and 226Ra in Shallow Groundwater of Nysa County (SW Poland): Concentrations, Background, and Radiological Risk
Abstract
1. Introduction
2. Materials and Methods
2.1. Determination of the Activity Concentrations of 222Rn and 226Ra
- c—222Rn activity concentration in water [Bq·dm−3];
- λ2—222Rn decay constant [s−1];
- k2αa—correction factor [–];
- ∑L*2αa—number of recorded 222Rn pulses and its derivatives in time from t0a to t0a + ta [–];
- LPo—number of 210Po decays in time from t0a to t0a + ta [–];
- Vp—volume of water sample tested [dm3];
- kt2αa—emission factor 222Rn [–]; if the measurement is performed within 5 h to 2 days after taking the water sample, it can be assumed = 3.01;
- t0a—time counted from the moment of water flowing out of the aquifer until the start of the measurement in the spectrometer (until the beginning of the pulse counting process) [s];
- ta—measurement duration (pulse count duration) [s].
2.2. Determination of the Hydrogeochemical Background
2.3. Estimation of the Effective Dose of Ionizing Radiation
- AEDig—annual effective dose received through ingestion [Sv·year−1];
- CRn—222Rn activity concentration [Bq·L−1];
- EDC—effective dose conversion factor [Sv·Bq−1];
- CW—annual volume of water consumed [L·year−1].
3. Results and Discussion
3.1. Activity Concentrations of 222Rn and 226Ra
3.2. Hydrogeochemical Background
3.3. Effective Doses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- GUS. Available online: https://www.stat.gov.pl (accessed on 25 June 2025).
- Stupnicka, E. Geologia Regionalna Polski; Wydawnictwa Geologiczne: Warsaw, Poland, 1989. [Google Scholar]
- Przylibski, T.A. (Ed.) Studium możliwości rozpoznania nowych wystąpień wód zmineralizowanych, swoistych i termalnych na obszarze bloku przedsudeckiego, Politechnika Wrocławska, Instytut Górnictwa, Raport Ser. Available online: https://www.pgi.gov.pl/geotermia-2/baza-wiedzy/bibliografia.html?act=index&orderfld=bbl.rok_wydania&orderdrc=asc&page=156 (accessed on 2 May 2018).
- Żelaźniewicz, A.; Aleksandrowski, P. Regionalizacja tektoniczna Polski—Polska południowo-zachodnia. Przegląd Geol. 2008, 56, 904–911. [Google Scholar]
- Oberc, J. Budowa Geologiczna Polski, T. 4, Tektonika. Cz. 2, Sudety i Obszary przyległe; Wydawnictwa Geologiczne: Warsaw, Poland, 1972. [Google Scholar]
- Dadlez, R. Palaeogeographical Atlas of Epicontinental Permian and Mesozoic in Poland; Państwowy Instytut Geologiczny: Warsaw, Poland, 1998. [Google Scholar]
- PIG-PIB. Available online: https://geologia.pgi.gov.pl/mapy/?page=Kartografia-geologiczna (accessed on 1 July 2025).
- Jagielak, J.; Biernacka, M.; Henschke, J.; Sosińska, A. Radiologiczny atlas Polski 1997; Biblioteka Monitoringu Środowiska; Państwowa Inspekcja Ochrony Środowiska, Centralne Laboratorium Ochrony Radiologicznej, Państwowa Agencja Atomistyki: Warsaw, Poland, 1998. [Google Scholar]
- Weigel, F. Radon. Chem. Ztg 1978, 102, 9. [Google Scholar]
- Duchemin, B.; Coursol, N.; Bé, M.M. The re-evaluation of decay data for the U-238 chain. Nucl. Instrum. Methods Phys. Res. Sect. A 1994, A339, 146–150. [Google Scholar] [CrossRef]
- Przylibski, T.A. Radon. Specific Component of Medicinal Waters in the Sudety Mountains; Oficyna Wydawnicza Politechniki Wrocławskiej: Wroclaw, Poland, 2005. [Google Scholar]
- Senior, L.A.; Vogel, K.L. Radium and Radon in Ground Water in the Chickies Quartzite, Southeastern Pennsylvania; U.S. Geological Survey Water-Resources Investigations Report 92-4088; U.S. Geological Survey: Lemoyne, PA, USA, 1995. [Google Scholar]
- Szabo, Z.; dePaul, V.T. Radium-226 and Radium-228 in Shallow Ground Water, Southern New Jersey; U.S. Geological Survey: Lawrenceville, NJ, USA, 1998; FS-062-98. [Google Scholar] [CrossRef]
- Kay, R.T. Radium in Ground Water from Public-Water Supplies in Northern Illinois; U.S. Geological Survey: Reston, VA, USA, 1999; Fact Sheet 137-99. [Google Scholar] [CrossRef]
- Hirunwatthanakul, P.; Sriplung, H.; Geater, A. Radium-Contaminated Water: A Risk Factor for Cancer of the Upper Digestive Tract. Asian Pac. J. Cancer Prev. 2006, 7, 295–298. [Google Scholar] [PubMed]
- Poeppel, T.D.; Handkiewicz-Junak, D.; Andreeff, M.; Becherer, A.; Bockisch, A.; Fricke, E.; Geworski, L.; Heinzel, A.; Krause, B.J.; Krause, T.; et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 824–845. [Google Scholar] [CrossRef]
- INCHEM. Available online: https://www.inchem.org/documents/iarc/vol78/vol78-radionuclides.html (accessed on 17 August 2025).
- Rowland, R.E. Radium in Humans. A Review of U.S. Studies; Argonne National Laboratory Publisher Info: Argonne, IL, USA, 1984. [Google Scholar]
- Hopke, P.K.; Borak, T.B.; Doul, J.; Cleaver, J.E.; Eckerman, K.F.; Gundersen, L.C.S.; Harley, N.H.; Hess, C.T.; Kinner, N.E.; Kopecky, K.J.; et al. Health Risks Due to Radon in Drinking Water. Environ. Sci. Technol. 2000, 34, 921–926. [Google Scholar] [CrossRef]
- Mothersill, C.; Seymour, C.B. Radiation-induced bystander effects and adaptive responses—The yin and yang of low dose radiobiology. Mutat. Res. 2004, 568, 121–128. [Google Scholar] [CrossRef]
- Rozporządzenie Ministra Zdrowia z dnia 13 kwietnia 2006 r. w sprawie zakresu analiz niezbędnych do stwierdzenia właściwości leczniczych naturalnych surowców leczniczych oraz właściwości leczniczych klimatu, kryteriów ich oceny oraz wzoru certyfikatu potwierdzającego te właściwości (Dz.U. 2006 nr 80 poz. 565, tj. Dz.U. 2018 poz. 605). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20180000605 (accessed on 1 June 2025).
- Rozporządzenie Rozporządzenie Ministra Zdrowia z dnia 7 grudnia 2017 r. w Sprawie Jakości wody Przeznaczonej do Spożycia Przez Ludzi (Dz.U. 2017 poz. 2294). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170002294 (accessed on 25 May 2025).
- Domin, E.; Przylibski, T.A. 222Rn occurrence in groundwaters of the Kaczawa metamorphic complex in the Fore-Sudetic block area. In Interdisciplinary Problems in Mining and Geology; Drzymała, J., Ed.; University of Science and Technology: Wroclaw, Poland, 2014; Volume 5. [Google Scholar]
- Prusak, J.; Przylibski, T.A. Potencjalnie lecznicze wody radonowe wschodniej części Wysokiego Grzbietu Gór Izerskich (Sudety) o największej zawartości radonu w Polsce. Przegląd Geol. 2023, 71, 58–70. [Google Scholar] [CrossRef]
- Przylibski, T.A.; Adamczyk-Lorenc, A.; Żak, S. Areas of potentially medicinal radon water occurrence in the Sudetes. Part II. In Potencjał Radonowy Sudetów wraz z Wyznaczeniem Obszarów Występowania Potencjalnie Leczniczych wód Radonowych; Wołkowicz, S., Ed.; Państwowy Instytut Geologiczny: Warsaw, Poland, 2007. [Google Scholar]
- Przylibski, T.A.; Fijałkowska, L.; Bielecka, A. Potentially medicinal radon waters of the Ślęża massif. Przegląd Geol. 2008, 56, 763–771. [Google Scholar]
- Przylibski, T.A.; Górecka, J. 222Rn activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland). J. Environ. Radioact. 2014, 134, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Przylibski, T.; Górecka, J.; Kowalska, A.; Fijałkowska-Lichwa, L.; Zagożdżon, K.; Zagożdżon, P.P.; Miśta, W.; Nowakowski, R. 222Rn and 226Ra activity concentrations in groundwaters of southern Poland: New data and selected genetic relations. J. Radioanal. Nucl. Chem. 2014, 301, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Przylibski, T.A.; Domin, E.; Górecka, J.; Kowalska, A. 222Rn Concentration in Groundwaters Circulating in Granitoid Massifs of Poland. Water 2020, 12, 748. [Google Scholar] [CrossRef]
- Przylibski, T.A.; Maciejewski, P.; Zagożdżon, K.; Zagożdżon, P.P. Szybkość uwalniania się 222Rn z wód podziemnych do atmosfery. Przegląd Geol. 2022, 70, 742–750. [Google Scholar] [CrossRef]
- Walencik, A.; Kozłowska, B.; Przylibski, T.A.; Dorda, J.; Zipper, W. Natural radioactivity of groundwater from the Przerzeczyn-Zdrój Spa. Nukleonika 2010, 55, 169–175. [Google Scholar]
- Domin, E. Potencjalnie Lecznicze Wody Radonowe Bloku Przedsudeckiego. Ph.D. Thesis, Wrocław University of Science and Technology, Wroclaw, Poland, 2018. [Google Scholar]
- Maciejewski, P.; Kowalska, A. 222Rn and 226Ra concentrations in selected shallow circulation groundwaters from the Fore-Sudetic Monocline area. Environ. Geochem. Health 2023, 45, 4311–4325. [Google Scholar] [CrossRef]
- Maciejewski, P.; Ciapka, D.; Szczęśniewicz, M.; Przylibski, T.A. Hydrochemical background of 222Rn in surface waters of Lower Silesia (SW Poland). J. Hydrol. 2024, 628, 130548. [Google Scholar] [CrossRef]
- Przylibski, T.A. Shallow circulation groundwater—The main type of water containing hazardous radon concentration. Nat. Hazards Earth Syst. Sci. 2011, 11, 1695–1703. [Google Scholar] [CrossRef]
- Ciężkowski, W.; Przylibski, T.A. Radon in waters from health resorts of the Sudety Mts. (SW Poland). Appl. Radiat. Isot. 1997, 48, 855–856. [Google Scholar] [CrossRef]
- Przylibski, T.A. Wybrane Uwarunkowania Występowania Radonu-222 w Sudetach. Ph.D. Thesis, Instytut Geotechniki i Hydrotechniki Politechniki Wrocławskiej, Wrocław, Poland, 1997. Report Ser. PRE no. 577. [Google Scholar]
- Eisenlohr, L.; Surbeck, H. Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura. Comptes Rendus L’academie Des Sciences. Ser. 2 Sci. Terre Planetes 1995, 321, 761–767. [Google Scholar]
- Gudzenko, V. Radon in subsurface water studies. Isotopes of noble gases as tracers in environmental studies. In Proceedings of a Consultants Meeting on Isotopes of Noble gases as Tracers in Environmental Studies Organized by the International Atomic Energy Agency, Vienna, Austria, 29 May–2 June 1989; International Atomic Energy Agency: Vienna, Austria, 1992; pp. 249–261. [Google Scholar]
- Choubey, V.M.; Bartaryam, S.K.; Sainim, N.K.; Ramola, R.C. Impact of geohydrology and neotectonic activity on radon concentration in groundwater of intermontane Doon Valley, Outer Himalaya, India. Environ. Geol. 2001, 40, 257–266. [Google Scholar] [CrossRef]
- Choubey, V.M.; Bartarya, S.K.; Ramola, R.C. Radon in groundwater of eastern Doon valley, Outer Himalaya. Radiat. Meas. 2003, 36, 401–405. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th Edition, Incorporating the 1st Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Żelaźniewicz, A.; Aleksandrowski, P.; Buła, Z.; Karnkowski, P.H.; Konon, A.; Oszczypko, N.; Ślączka, A.; Żaba, J.; Żytko, K. Regionalizacja tektoniczna Polski; Komitet Nauk Geologicznych PAN: Wroclaw, Poland, 2011. [Google Scholar]
- Kowalska, A. Zależność Występowania Zwiększonych Stężeń Aktywności Izotopów 226Ra i 228Ra od Składu i typu Chemicznego wód Podziemnych. Ph.D. Thesis, Wrocław University of Science and Technology, Wroclaw, Poland, 2017. [Google Scholar]
- Ahmad, M.; Jamal, A.; Tang, X.-W.; Al-Sughaiyer, M.A.; Al-Ahmadi, H.M.; Ahmad, F. Assessing Potable Water Quality and Identifying Areas of Waterborne Diarrheal and Fluorosis Health Risks Using Spatial Interpolation in Peshawar, Pakistan. Water 2020, 12, 2163. [Google Scholar] [CrossRef]
- Mohapatra, L. Spatio-Temporal Analysis and Modelling of Water Quality in Mahanadi River Basin. Ph.D. Thesis, The National Institute of Technology, Rourkela, India, 2017. [Google Scholar]
- Wielkopolska Biblioteka Cyfrowa. Available online: https://www.wbc.poznan.pl/Content/382516/metody-interpolacji.html (accessed on 26 June 2025).
- Dowgiałło, J.; Kleczkowski, A.S.; Macioszczyk, T.; Różkowski, A. (Eds.) Słownik Hydrogeologiczny, 2nd ed.; Państwowy Instytut Geologiczny: Warsaw, Poland, 2002. [Google Scholar]
- Dastjerdy, B.; Saeidi, A.; Heidarzadeh, S. Review of Applicable Outlier Detection Methods to Treat Geomechanical Data. Geotechnics 2023, 3, 375–396. [Google Scholar] [CrossRef]
- Janica, D. Naturalne tło Hydrogeochemiczne Czwartorzędowych wód Podziemnych Polski Północno-Wschodniej. Ph.D. Thesis, University of Warsaw, Warsaw, Poland, 2001. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley Series in Behavioral Science-Quantitative Methods; Addison-Wesley: Reading, MA, USA, 1977. [Google Scholar]
- Adamczyk-Lorenc, A. Tło Hydrogeochemiczne Radonu w Wodach Podziemnych Sudetów. Ph.D. Thesis, Wrocław University of Science and Technology, Wroclaw, Poland, 2007. [Google Scholar]
- Nielsen, D.M. Practical Handbook of Ground Water Monitoring; Lewis Publishers: Chelsea, MI, USA, 1991. [Google Scholar]
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Report to the General Assembly, with Scientific Annex B: Exposure from Natural Radiations Sources; UN Publication: New York, NY, USA, 2000. [Google Scholar]
- National Research Council. Risk Assessment of Radon in Drinking Water; National Academy Press: Washington, DC, USA, 1999. [Google Scholar] [CrossRef]
- Clement, C.H.; Ogino, H.; Paquet, F.; Bailey, M.R.; Leggett, R.W.; Lipsztein, J.; Marsh, J.; Fell, T.P.; Smith, T.; Nosske, D.; et al. Occupational Intakes of Radionuclides: Part 3. Ann. ICRP 2017, 46, 314. [Google Scholar]
- Elzain, A.; Shady, R.; Yagob, A. Assessment of environmental radioactivity concentration and effective dose rates from gas exposure from water samples in Gezira Stare, Sudan. Radioprotection 2024, 59, 235–245. [Google Scholar] [CrossRef]
- Bertin, C.; Bourg, A.C.M. Radon-222 and Chloride as Natural Tracers of the Infiltration of River Water into an Alluvial Aquifer in Which There Is Significant River/Groundwater Mixing. Environ. Sci. Technol. 1994, 28, 794–798. [Google Scholar] [CrossRef]
- Snow, D.D.; Spalding, R.F. Short-term Aquifer Residence Times Estimated from 222Rn Disequilibrium in Artificially-recharged Ground Water. J. Environ. Radioact. 1997, 37, 307–325. [Google Scholar] [CrossRef]
- Hoehn, E.; Von Gunten, H.R. Radon in Groundwater: A Tool to Assess Infiltration From Surface Waters to Aquifers. Water Resour. Res. 1989, 25, 1795–1803. [Google Scholar] [CrossRef]
- Grocholski, A.; Drozdrowski, S. Blok Przedsudecki—Analiza Stanu Rozpoznania i Kierunki Dalszych Badań Geologicznych; Narod. Arch. Geol. PIG-PIB: Wroclaw, Poland, 1992. [Google Scholar]
- Cymerman, Z. Mapa geologiczna Polski 1:200 00 (bez Utworów Czwartorzędowych), Mapa Tektoniczna Sudetów i Bloku Przedsudeckiego; Państwowy Instytut Geologiczny: Warsaw, Poland, 2004. [Google Scholar]
- Fernandes, M.M.; Klinkenberg, M.; Baeyens, B.; Bosbach, D.; Brandt, F. Adsorption of Ba and 226Ra on illite: A comparative experimental and modelling study. Appl. Geochem. 2023, 159, 105815. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. The Environmental Behaviour of Radium: Revised Edition; Technical Reports Series No. 476; IAEA: Vienna, Austria, 2014. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Vinson, D.S.; Campbell, T.R.; Vengosh, A. Radon transfer from groundwater used in showers to indoor air. Appl. Geochem. 2008, 23, 2676–2685. [Google Scholar] [CrossRef]
- Szczepańska, J.; Kmiecik, E. Statystyczna Kontrola Jakości Danych w Monitoringu wód Podziemnych; Wydawnictwa AGH: Cracow, Poland, 1998. [Google Scholar]
- ICRP. The 2007 recommendations of the International Commission on Radiological Protection. Ann. ICRP 2008, 37, 1–332. [Google Scholar]
- Ustawa z dnia 29 listopada 2000 r. Prawo Atomowe (Dz.U. 2001 nr 3 poz. 18, tj. Dz.U. 2024 poz. 1277). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20240001277 (accessed on 20 May 2025).
Source | Age Group [−] | Effective Dose Conversion Factor [Sv·Bq−1] |
---|---|---|
National Research Council [55] | Adults | 3.5 × 10−9 |
Infants | 4 × 10−8 | |
1 year old | 2.3 × 10−8 | |
5 years old | 1 × 10−8 | |
10 years old | 5.9 × 10−9 | |
15 years old | 4.2 × 10−9 | |
ICRP [56] | Adults | 6.9 × 10−10 |
No. | Date of Sampling | Location | 222Rn [Bq·L−1] | 226Ra [Bq·L−1] |
---|---|---|---|---|
1 | 22 March 2025 | Jarnołtówek | 10.13 ± 0.91 | <0.05 |
2 | Podlesie | 7.19 ± 0.71 | <0.05 | |
3 | Stary Las | 2.60 ± 0.36 | <0.05 | |
4 | Wilamowice Nyskie | 20.63 ± 1.51 | <0.05 | |
5 | Biała Nyska | 2.96 ± 0.39 | <0.05 | |
6 | Domaszkowice | 5.12 ± 0.56 | <0.05 | |
7 | Rynarcice | 3.75 ± 0.46 | <0.05 | |
8 | Stara Jamka | 1.49 ± 0.25 | <0.05 | |
9 | Rzymkowice | 2.80 ± 0.38 | <0.05 | |
10 | Niesiebędowice | 8.75 ± 0.84 | <0.05 | |
11 | Giełczyce | 3.37 ± 0.36 | <0.05 | |
12 | Prusinowice | 3.13 ± 0.35 | <0.05 | |
13 | 13 April 2025 | Chróścina | 1.38 ± 0.22 | <0.05 |
14 | Rzymiany | 2.48 ± 0.32 | <0.05 | |
15 | Jędrzychów | 4.17 ± 0.45 | <0.05 | |
16 | Łąka | 16.33 ± 1.20 | <0.05 | |
17 | Jasienica Góra | 6.11 ± 0.60 | <0.05 | |
18 | Wilamowa | 0.95 ± 0.18 | <0.05 | |
19 | Kamienica | 6.10 ± 0.62 | <0.05 | |
20 | Maciejowice | 0.23 ± 0.08 | <0.05 | |
21 | Otmuchów | 5.92 ± 0.60 | <0.05 | |
22 | Goworowice | 9.92 ± 0.86 | <0.05 | |
23 | Szklary | 5.03 ± 0.54 | <0.05 |
No. | ICRP [μSv·y−1] | UNSCEAR [μSv·y−1] | |||||
---|---|---|---|---|---|---|---|
Adults | Adults | Infants | 1 Year Old | 5 Years Old | 10 Years Old | 15 Years Old | |
1 | 3.50 ± 0.30 | 17.70 ± 1.60 | 60.75 ± 5.45 | 34.95 ± 3.15 | 15.20 ± 1.40 | 9.00 ± 0.80 | 6.40 ± 0.60 |
2 | 2.45 ± 0.25 | 12.55 ± 1.25 | 43.15 ± 4.25 | 24.85 ± 2.45 | 10.80 ± 1.10 | 6.35 ± 0.65 | 4.55 ± 0.45 |
3 | 0.90 ± 0.10 | 4.55 ± 0.65 | 15.60 ± 2.20 | 8.95 ± 1.25 | 3.90 ± 0.50 | 2.30 ± 0.30 | 1.65 ± 0.25 |
4 | 7.10 ± 0.50 | 36.10 ± 2.60 | 123.75 ± 9.05 | 71.20 ± 5.20 | 30.95 ± 2.25 | 18.25 ± 1.35 | 12.95 ± 0.95 |
5 | 1.05 ± 0.15 | 5.20 ± 0.70 | 17.75 ± 2.35 | 10.25 ± 1.35 | 4.45 ± 0.55 | 2.65 ± 0.35 | 1.85 ± 0.25 |
6 | 1.80 ± 0.20 | 8.95 ± 0.95 | 30.75 ± 3.35 | 17.65 ± 1.95 | 7.65 ± 0.85 | 4.50 ± 0.50 | 3.25 ± 0.35 |
7 | 1.30 ± 0.20 | 6.60 ± 0.80 | 22.50 ± 2.80 | 12.95 ± 1.55 | 5.60 ± 0.70 | 3.30 ± 0.40 | 2.40 ± 0.30 |
8 | 0.50 ± 0.10 | 2.60 ± 0.40 | 8.90 ± 1.50 | 5.15 ± 0.85 | 2.25 ± 0.35 | 1.30 ± 0.20 | 0.95 ± 0.15 |
9 | 0.95 ± 0.15 | 4.90 ± 0.70 | 16.80 ± 2.30 | 9.65 ± 1.35 | 4.20 ± 0.60 | 2.45 ± 0.35 | 1.75 ± 0.25 |
10 | 3.00 ± 0.30 | 15.30 ± 1.50 | 52.50 ± 5.00 | 30.20 ± 2.90 | 13.15 ± 1.25 | 7.75 ± 0.75 | 5.50 ± 0.50 |
11 | 1.15 ± 0.15 | 5.90 ± 0.60 | 20.25 ± 2.15 | 11.65 ± 1.25 | 5.05 ± 0.55 | 3.00 ± 0.30 | 2.10 ± 0.20 |
12 | 1.10 ± 0.10 | 5.50 ± 0.60 | 18.80 ± 2.10 | 10.80 ± 1.20 | 4.70 ± 0.50 | 2.80 ± 0.30 | 2.00 ± 0.20 |
13 | 0.50 ± 0.10 | 2.40 ± 0.40 | 8.30 ± 1.30 | 4.75 ± 0.75 | 2.05 ± 0.35 | 1.20 ± 0.20 | 0.85 ± 0.15 |
14 | 0.85 ± 0.15 | 4.35 ± 0.55 | 14.90 ± 1.90 | 8.60 ± 1.10 | 3.70 ± 0.50 | 2.20 ± 0.30 | 1.60 ± 0.20 |
15 | 1.45 ± 0.15 | 7.30 ± 0.80 | 25.00 ± 2.70 | 14.35 ± 1.55 | 6.25 ± 0.65 | 3.70 ± 0.40 | 2.60 ± 0.30 |
16 | 5.60 ± 0.40 | 28.60 ± 2.10 | 98.00 ± 7.20 | 56.35 ± 4.15 | 24.50 ± 1.80 | 14.45 ± 1.05 | 10.25 ± 0.75 |
17 | 2.10 ± 0.20 | 10.65 ± 1.05 | 36.70 ± 3.60 | 21.05 ± 2.05 | 9.20 ± 0.90 | 5.40 ± 0.50 | 3.85 ± 0.35 |
18 | 0.35 ± 0.05 | 1.65 ± 0.35 | 5.70 ± 1.10 | 3.30 ± 0.60 | 1.45 ± 0.25 | 0.85 ± 0.15 | 0.60 ± 0.10 |
19 | 2.10 ± 0.20 | 10.70 ± 1.10 | 36.60 ± 3.70 | 21.05 ± 2.15 | 9.15 ± 0.95 | 5.35 ± 0.55 | 3.85 ± 0.35 |
20 | 0.10 ± 0.01 | 0.40 ± 0.10 | 1.40 ± 0.50 | 0.80 ± 0.30 | 0.35 ± 0.15 | 0.20 ± 0.10 | 0.15 ± 0.05 |
21 | 2.00 ± 0.20 | 10.35 ± 1.05 | 35.50 ± 3.60 | 20.45 ± 2.05 | 8.90 ± 0.90 | 5.25 ± 0.55 | 3.75 ± 0.35 |
22 | 3.40 ± 0.30 | 17.40 ± 1.50 | 59.55 ± 5.15 | 34.25 ± 2.95 | 14.90 ± 1.30 | 8.75 ± 0.75 | 6.25 ± 0.55 |
23 | 1.70 ± 0.20 | 8.80 ± 0.90 | 30.15 ± 3.25 | 17.35 ± 1.85 | 7.55 ± 0.85 | 4.45 ± 0.45 | 3.15 ± 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejewski, P.; Ładziński, J. Natural Radionuclides 222Rn and 226Ra in Shallow Groundwater of Nysa County (SW Poland): Concentrations, Background, and Radiological Risk. Water 2025, 17, 2596. https://doi.org/10.3390/w17172596
Maciejewski P, Ładziński J. Natural Radionuclides 222Rn and 226Ra in Shallow Groundwater of Nysa County (SW Poland): Concentrations, Background, and Radiological Risk. Water. 2025; 17(17):2596. https://doi.org/10.3390/w17172596
Chicago/Turabian StyleMaciejewski, Piotr, and Jakub Ładziński. 2025. "Natural Radionuclides 222Rn and 226Ra in Shallow Groundwater of Nysa County (SW Poland): Concentrations, Background, and Radiological Risk" Water 17, no. 17: 2596. https://doi.org/10.3390/w17172596
APA StyleMaciejewski, P., & Ładziński, J. (2025). Natural Radionuclides 222Rn and 226Ra in Shallow Groundwater of Nysa County (SW Poland): Concentrations, Background, and Radiological Risk. Water, 17(17), 2596. https://doi.org/10.3390/w17172596