Laboratory-Scale Biochar-Aerated Constructed Wetlands for Low C/N Wastewater: Standardization and Legal Cooperation from a Watershed Restoration Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Biochar Preparation
2.2. Constructed Wetland System Configuration
2.3. Experimental Design
2.4. Analytical Methods
2.5. Research Methodology for Technical Standardization and Legal Coordination Mechanisms
3. Results and Discussion
3.1. Biochar Characteristics and Adsorption Performance
3.2. Removal Performance of Nitrogen and COD in Constructed Wetlands
3.2.1. Nitrogen Removal Performance in Constructed Wetlands
- 1.
- NO2−−N Removal
- 2.
- NH4+−N Removal
- 3.
- NO3−−N Removal
- 4.
- TN Removal
3.2.2. COD Removal Performance in Constructed Wetlands
3.3. Microbial Community Response in Constructed Wetlands
4. Institutional and Regulatory Implications
4.1. Standards Level: Incorporating Biochar-Coupled Intermittent Aeration into Water Ecological Environment Treatment Technical Standards
4.2. Regulatory Level: Achieving Synergy Between Treatment Technologies Such as Biochar-Coupled Intermittent Aeration and Legal Norms
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, X.; Xu, Q.; Huang, C. Current Status and Future Tendency of Lake Eutrophication in China. Sci. China C Life Sci. 2005, 48, 948–954. [Google Scholar] [CrossRef] [PubMed]
- Vymazal, J. Removal of Nutrients in Various Types of Constructed Wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Hu, Z.; Liang, S.; Fan, J.; Liu, H. A Review on the Sustainability of Constructed Wetlands for Wastewater Treatment: Design and Operation. Bioresour. Technol. 2015, 175, 594–601. [Google Scholar] [CrossRef]
- Zhang, D.Q.; Jinadasa, K.B.S.N.; Gersberg, R.M.; Liu, Y.; Ng, W.J.; Tan, S.K. Application of Constructed Wetlands for Wastewater Treatment in Developing Countries—A Review of Recent Developments (2000–2013). J. Environ. Manag. 2014, 141, 116–131. [Google Scholar] [CrossRef]
- Mohan, D.; Sarswat, A.; Ok, Y.S.; Pittman, C.U. Organic and Inorganic Contaminants Removal from Water with Biochar, a Renewable, Low Cost and Sustainable Adsorbent—A Critical Review. Bioresour. Technol. 2014, 160, 191–202. [Google Scholar] [CrossRef]
- Wang, Y.; Tian, L.; Zheng, J.; Tan, Y.; Li, Y.; Wei, L.; Zhang, F.; Zhu, L. Enhancing Nitrogen Removal in Low C/N Wastewater with Recycled Sludge-Derived Biochar: A Sustainable Solution. Water Res. 2024, 267, 122551. [Google Scholar] [CrossRef]
- Saeed, T.; Sun, G. A Review on Nitrogen and Organics Removal Mechanisms in Subsurface Flow Constructed Wetlands: Dependency on Environmental Parameters, Operating Conditions and Supporting Media. J. Environ. Manag. 2012, 112, 429–448. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, X.; Zhang, H.; Wu, H. Enhanced Nitrogen Removal of Low C/N Domestic Wastewater Using a Biochar-Amended Aerated Vertical Flow Constructed Wetland. Bioresour. Technol. 2017, 241, 269–275. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, W.; Wang, W.; Yin, W.; Liu, H.; Ma, X.; Zhou, Y.; Lei, P.; Wei, D.; Zhang, L.; et al. A Review on China’s Constructed Wetlands in Recent Three Decades: Application and Practice. J. Environ. Sci. 2021, 104, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; You, Z.; Huang, Y.; Peng, J.; He, T.; Su, T.; Li, Y.; Ragauskas, A.J.; Wang, S.; Song, X.; et al. New Insights in the Formation Mechanism of Cellulose-Based Biochar. Small 2025, 21, 2410597. [Google Scholar] [CrossRef]
- Li, J.; Gu, G.; Zhang, J.; Wang, Y.; Peng, C.; Li, Y.; Yang, S.; Tao, E. MnSO4-Modified Woodchip Biochar “Dual Fixation” Mechanism: Functional Group-Electron Synergistic Stabilization of Heavy Metals and Carbon Structure. J. Environ. Chem. Eng. 2025, 13, 116706. [Google Scholar] [CrossRef]
- Abbey, A.N.A.; Frimpong, K.A.; Odoi-Yorke, F.; Ampofo, E.A.; Darko, R.O. A Review of Biochar’s Sustainability in Climate-Smart Agriculture: Recent Advances, Emerging Trends, and Future Directions. Eur. J. Agron. 2025, 169, 127690. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y.; Zhang, Y.; Zhang, X. Effects of HRT on the Efficiency of Denitrification and Carbon Source Release in Constructed Wetland Filled with Bark. Water Sci. Technol. 2017, 75, 2908–2915. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wu, H.; Zhang, J.; Ngo, H.H.; Guo, W.; Kong, Q. Nitrogen Removal and Nitrous Oxide Emission in Surface Flow Constructed Wetlands for Treating Sewage Treatment Plant Effluent: Effect of C/N Ratios. Bioresour. Technol. 2017, 240, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Wang, R.; Feng, L.; Zhou, X.; Lv, J.; Wu, H. Intensified Nitrogen Removal in Intermittently-Aerated Vertical Flow Constructed Wetlands with Agricultural Biomass: Effect of Influent C/N Ratios. Chem. Eng. J. 2018, 345, 22–30. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, X.; Shi, H.; Li, J.; Zhang, M.; Zhao, J.; Su, X. Comprehensive Assessment of 16S rRNA Gene Amplicon Sequencing for Microbiome Profiling across Multiple Habitats. Microbiol. Spectr. 2023, 11, e00563-23. [Google Scholar] [CrossRef]
- Alemu, T. Post-Treatment of Tannery Wastewater Using Pilot Scale Horizontal Subsurface Flow Constructed Wetlands (Polishing). Water Sci. Technol. 2017, 77, 988–998. [Google Scholar] [CrossRef]
- Lago, B.C.; Silva, C.A.; Melo, L.C.A.; Morais, E.G.D. Predicting Biochar Cation Exchange Capacity Using Fourier Transform Infrared Spectroscopy Combined with Partial Least Square Regression. Sci. Total Environ. 2021, 794, 148762. [Google Scholar] [CrossRef]
- Ghobeira, R.; Esbah Tabaei, P.S.; Morent, R.; De Geyter, N. Chemical Characterization of Plasma-Activated Polymeric Surfaces via XPS Analyses: A Review. Surf. Interfaces 2022, 31, 102087. [Google Scholar] [CrossRef]
- Chand, N.; Kumar, K.; Suthar, S. Enhanced Wastewater Nutrients Removal in Vertical Subsurface Flow Constructed Wetland: Effect of Biochar Addition and Tidal Flow Operation. Chemosphere 2022, 286, 131742. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lu, T.; Chen, Y.; Tian, G.; Sharma, V.K.; Zhu, Y.; Zong, L.; Wang, A. Mesoporous Silicate/Carbon Composites Derived from Dye-Loaded Palygorskite Clay Waste for Efficient Removal of Organic Contaminants. Sci. Total Environ. 2019, 696, 133955. [Google Scholar] [CrossRef]
- Cai, Y.; Zhu, M.; Meng, X.; Zhou, J.L.; Zhang, H.; Shen, X. The Role of Biochar on Alleviating Ammonia Toxicity in Anaerobic Digestion of Nitrogen-Rich Wastes: A Review. Bioresour. Technol. 2022, 351, 126924. [Google Scholar] [CrossRef]
- Zhou, A.; Zhu, L.; Chen, Y.; Wang, J.; Liu, Y. Fast Adsorption of Low-Concentration Ammonia Nitrogen by Persulfate-Modified Carbon Materials: Structure Influence, Performance, and Mechanism. Environ. Res. 2025, 278, 121680. [Google Scholar] [CrossRef]
- Gani, T.Z.H.; Berkson, Z.J.; Zhu, R.; Kang, J.H.; Di Iorio, J.R.; Chan, K.W.; Consoli, D.F.; Shaikh, S.K.; Copéret, C.; Román-Leshkov, Y. Promoting Active Site Renewal in Heterogeneous Olefin Metathesis Catalysts. Nature 2023, 617, 524–528. [Google Scholar] [CrossRef]
- Dong, L.; Hou, L.; Wang, Z.; Gu, P.; Chen, G.; Jiang, R. A New Function of Spent Activated Carbon in BAC Process: Removing Heavy Metals by Ion Exchange Mechanism. J. Hazard. Mater. 2018, 359, 76–84. [Google Scholar] [CrossRef]
- Sun, C.; Wang, G.; Liu, Y.; Bei, K.; Yu, G.; Zheng, W.; Liu, Y. The Adsorption Mechanism and Optimal Dosage of Walnut Shell Biochar for Chloramphenicol. Heliyon 2024, 10, e39123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, D.; Zhou, C.; Huang, X.; Chen, Y.; Wang, S.; Liu, G. Enhanced Nitrogen Removal via Partial Nitrification/Denitrification Coupled Anammox Using Three Stage Anoxic/Oxic Biofilm Process with Intermittent Aeration. Water Res. 2024, 255, 121491. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Yin, J.; Zhang, Y.; Luo, A.; Tian, Y.; Liu, Y.; Peng, Y. Nitrogen Removal and Carbon Reduction of Mature Landfill Leachate under Extremely Low Dissolved Oxygen Conditions by Simultaneous Partial Nitrification Anammox and Denitrification. Bioresour. Technol. 2024, 401, 130704. [Google Scholar] [CrossRef]
- Fan, X.; Wang, S.; Zhang, Y.; Zhao, M.; Zhou, N.; Fan, S. Effect of Citric Acid Modification on the Properties of Hydrochar and Pyrochar and Their Adsorption Performance toward Methylene Blue: Crucial Roles of Minerals and Oxygen Functional Groups. Environ. Monit. Assess. 2024, 196, 664. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, L.; Zhang, H.; Wu, H. Determination of the Optimal Aeration for Nitrogen Removal in Biochar-Amended Aerated Vertical Flow Constructed Wetlands. Bioresour. Technol. 2018, 261, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Aragón-Briceño, C.I.; Pozarlik, A.K.; Bramer, E.A.; Niedzwiecki, L.; Pawlak-Kruczek, H.; Brem, G. Hydrothermal Carbonization of Wet Biomass from Nitrogen and Phosphorus Approach: A Review. Renew. Energy 2021, 171, 401–415. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, Z.; Li, Z.; Wu, H. Impacts of Aeration and Biochar Addition on Extracellular Polymeric Substances and Microbial Communities in Constructed Wetlands for Low C/N Wastewater Treatment: Implications for Clogging. Chem. Eng. J. 2020, 396, 125349. [Google Scholar] [CrossRef]
- Wang, J.-F.; Cai, Z.-X.; Li, Y.-H.; Sun, Y.-Y.; Wu, H.-M.; Song, X.-S.; Zhu, H. Microbiota and Genetic Potential for Reducing Nitrous Oxide Emissions by Biochar in Constructed Wetlands. Sci. Total Environ. 2023, 903, 166489. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, D.; Hou, X.; Jiang, N.; Li, Y.; Ge, S.; Mu, Y.; Shen, J. Nitrification-Denitrification Co-Metabolism in an Algal-Bacterial Aggregates System for Simultaneous Pyridine and Nitrogen Removal. J. Hazard. Mater. 2023, 460, 132390. [Google Scholar] [CrossRef]
- Cui, H.; Feng, Y.; Lu, W.; Wang, L.; Li, H.; Teng, Y.; Bai, Y.; Qu, K.; Song, Y.; Cui, Z. Effect of Hydraulic Retention Time on Denitrification Performance and Microbial Communities of Solid-Phase Denitrifying Reactors Using Polycaprolactone/Corncob Composite. Mar. Pollut. Bull. 2024, 205, 116559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, A.; Huang, P.; Min, L.; Sun, H. Sorption and Molecular Fractionation of Biochar-Derived Dissolved Organic Matter on Ferrihydrite. J. Hazard. Mater. 2020, 392, 122260. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Yang, K.; Zeng, Q.; Le, L.; Ran, H.; Liu, D. Acid Treatment for Enhancing Hg0 Removal Efficiency of Chlorine-Loaded Biochar: Mechanism and Kinetic Analysis. Environ. Sci. Pollut. Res. 2023, 31, 4897–4909. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, X.; Zhou, L.; Zhu, Z.; Wu, Z.; Zhang, K.; Wang, Y.; Ju, T.; Ji, X.; Jin, D.; et al. Metagenomics Insights into High-Rate Nitrogen Removal from Municipal Wastewater by Integrated Nitrification, Partial Denitrification and Anammox at an Extremely Short Hydraulic Retention Time. Bioresour. Technol. 2023, 387, 129606. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, Y.; Van Loosdrecht, M.C.M.; Chen, G. Development of Nitrification and Elemental Sulfur-Based Denitrification/Anammox (NS0DA) Process for Mainstream Nitrogen Removal. Water Res. 2025, 283, 123836. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, J.; Li, M.; Zhuang, L.-L. Optimization of the Pollutant Removal in Partially Unsaturated Constructed Wetland by Adding Microfiber and Solid Carbon Source Based on Oxygen and Carbon Regulation. Sci. Total Environ. 2021, 752, 141919. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Y.; Yang, Y.; Fang, Y.; Luo, S.; Cheng, H.; Wang, A. Element Sulfur-Based Autotrophic Denitrification Constructed Wetland as an Efficient Approach for Nitrogen Removal from Low C/N Wastewater. Water Res. 2022, 226, 119258. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Yang, W.; Zhao, H.; Tan, Q. Effects of Carbon to Nitrogen Ratio on Nitrogen Removal in a Single-Stage Microaerobic System: A Model-Based Evaluation. J. Environ. Manag. 2024, 359, 121007. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-H.; Jeong, Y.-H.; Nguyen, H.-H.T.; Kwak, D.-H. Experimental Application of Micro/Nano Bubbles to Control P Release and Separate P Particles from Benthic Lake Sediment. J. Contam. Hydrol. 2025, 268, 104466. [Google Scholar] [CrossRef] [PubMed]
- Özkan, A.; Stolley, D.L.; Cressman, E.N.K.; McMillin, M.; DeMorrow, S.; Yankeelov, T.E.; Rylander, M.N. Tumor Microenvironment Alters Chemoresistance of Hepatocellular Carcinoma Through CYP3A4 Metabolic Activity. Front. Oncol. 2021, 11, 662135. [Google Scholar] [CrossRef]
- He, S.; Ding, L.; Pan, Y.; Hu, H.; Ye, L.; Ren, H. Effect of Hydraulic Retention Time on Nitrogen Removal and Functional Gene Quantity/Transcription in Biochar Packed Reactors at 5 °C: A Control-Strategy Study. Bioresour. Technol. 2018, 264, 400–405. [Google Scholar] [CrossRef]
- Chang, Y.; Meng, J.; Hu, Y.; Lee, P.-H.; Zhan, X. A Review in Fe(0)/Fe(Ⅱ) Mediated Autotrophic Denitrification for Low C/N Wastewater Treatment. Water Res. 2025, 282, 123925. [Google Scholar] [CrossRef]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Zhou, X.; Manna, B.; Lyu, B.; Lear, G.; Kingsbury, J.M.; Singhal, N. Resource Recovery from Wastewater by Directing Microbial Metabolism toward Production of Value-Added Biochemicals. Bioresour. Technol. 2025, 419, 132061. [Google Scholar] [CrossRef]
- Xu, W.; Yang, B.; Wang, H.; Zhang, L.; Dong, J.; Liu, C. Simultaneous Removal of Antibiotics and Nitrogen by Microbial Fuel Cell-Constructed Wetlands: Microbial Response and Carbon–Nitrogen Metabolism Pathways. Sci. Total Environ. 2023, 893, 164855. [Google Scholar] [CrossRef]
- Deng, X.; Chen, G.; Zhang, C.; Gao, X.; Sun, B.; Shan, B. Manganese-Modified Biochar for Sediment Remediation: Effect, Microbial Community Response, and Mechanism. Environ. Pollut. 2024, 363, 125175. [Google Scholar] [CrossRef]
- Li, W.; Chen, X.; Yang, T.; Zhu, H.; He, Z.; Zhao, R.; Chen, Y. Sponge Iron Enriches Autotrophic/Aerobic Denitrifying Bacteria to Enhance Denitrification in Sequencing Batch Reactor. Bioresour. Technol. 2024, 407, 131097. [Google Scholar] [CrossRef] [PubMed]
- Chen, W. Technical standards as norms and their relationship with law. Chin. J. Int. Law 2022, 44, 84–100. [Google Scholar]
- Li, M. Technology is coupled with the specification structure: The Intelligent Construction of Environmental legal system in the Digital Age. Huxiang Law Rev. 2024, 4, 133–144. [Google Scholar] [CrossRef]
Run Stage | Experimental Conditions | Inlet Water Quality | |||||
---|---|---|---|---|---|---|---|
Interval Aeration | HRT(d) | C/N | COD (mg/L) | NH4+-N (mg/L) | NO3−-N (mg/L) | TN (mg/L) | |
Stage I | No | 3 | 3 | 90 ± 1.59 | 10 ± 0.61 | 20 ± 0.59 | 30 ± 1.20 |
Stage II | Yes | 3 | 3 | 90 ± 1.94 | 10 ± 0.88 | 20 ± 0.62 | 30 ± 1.50 |
Stage III | Yes | 2 | 3 | 90 ± 1.95 | 10 ± 0.33 | 20 ± 0.41 | 30 ± 0.74 |
Stage IV | Yes | 1 | 3 | 90 ± 1.92 | 10 ± 0.68 | 20 ± 0.50 | 30 ± 1.18 |
Stage V | Yes | 1 | 1 | 30 ± 1.64 | 10 ± 0.44 | 20 ± 0.13 | 30 ± 0.57 |
Stage VI | Yes | 1 | 5 | 150 ± 2.55 | 10 ± 0.51 | 20 ± 0.51 | 30 ± 1.02 |
Materials | C-H | C-C | C-O | C=O | O-C=O |
---|---|---|---|---|---|
YBC | 27.30 | 35.15 | 20.04 | 8.16 | 9.35 |
HBC | 25.57 | 33.71 | 22.20 | 9.81 | 8.71 |
FBC | 29.66 | 22.40 | 22.66 | 16.30 | 8.98 |
Samples | Langmuir Model | Langmuir Model | Langmuir | Freundlich Model | Freundlich |
---|---|---|---|---|---|
Qmax mg/L | KL mg/L | R2 | 1/n | R2 | |
YBC | 32.227 | 0.094 | 0.980 | 0.462 | 0.871 |
HBC | 17.388 | 0.315 | 0.990 | 0.405 | 0.833 |
FBC | 16.841 | 0.203 | 0.990 | 0.442 | 0.899 |
CWs | ACE | Chaol | Shannon | Simpson | Coverage | |
---|---|---|---|---|---|---|
Stage I | CW-YBC | 1515.73 | 1493.53 | 4.917 | 0.029606 | 0.994887 |
CW-HBC | 1024.12 | 1020.43 | 4.616 | 0.031079 | 0.997044 | |
CW-FBC | 1635.14 | 1619.11 | 5.294 | 0.019713 | 0.994607 | |
CW-BC | 1048.57 | 1040.83 | 4.770 | 0.020991 | 0.996225 | |
Stage II | CW-YBC | 1270.62 | 1259.97 | 5.212 | 0.014138 | 0.996065 |
CW-HBC | 1361.99 | 1393.36 | 5.126 | 0.015921 | 0.994987 | |
CW-FBC | 1415.99 | 1367.5 | 5.392 | 0.012268 | 0.995726 | |
CW-BC | 1235.46 | 1212.26 | 4.994 | 0.021389 | 0.995945 | |
Stage III | CW-YBC | 1567.67 | 1545.34 | 5.096 | 0.020823 | 0.994407 |
CW-HBC | 1547.60 | 1578.18 | 5.230 | 0.018812 | 0.994667 | |
CW-FBC | 1558.33 | 1537.85 | 5.041 | 0.039231 | 0.995026 | |
CW-BC | 805.60 | 797.28 | 3.556 | 0.092462 | 0.996964 | |
Stage IV | CW-YBC | 1336.96 | 1329.43 | 4.981 | 0.051622 | 0.995226 |
CWHBC | 1303.53 | 1309.44 | 5.566 | 0.037674 | 0.994307 | |
CW-FBC | 1848.66 | 1810.42 | 5.159 | 0.043549 | 0.994148 | |
CW-BC | 1471.4 | 1427.55 | 4.702 | 0.043549 | 0.994787 | |
Stage V | CW-YBC | 1338.74 | 1331.29 | 4.434 | 0.017917 | 0.995006 |
CW-HBC | 1571.80 | 1553.39 | 4.860 | 0.00934 | 0.996584 | |
CW-FBC | 1194.82 | 1207.16 | 4.412 | 0.041439 | 0.995486 | |
CW-BC | 1005.53 | 979.64 | 4.289 | 0.037081 | 0.996445 | |
Stage VI | CW-YBC | 1223.76 | 1204.10 | 4.357 | 0.054569 | 0.995526 |
CW-HBC | 1351.63 | 1329.77 | 5.127 | 0.017366 | 0.995925 | |
CW-FBC | 1661.82 | 1612.21 | 5.567 | 0.009612 | 0.994947 | |
CW-BC | 1427.30 | 1416.92 | 5.230 | 0.013771 | 0.994847 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Tan, S.; Huang, J.; Chen, Q.; Yu, G. Laboratory-Scale Biochar-Aerated Constructed Wetlands for Low C/N Wastewater: Standardization and Legal Cooperation from a Watershed Restoration Perspective. Water 2025, 17, 2482. https://doi.org/10.3390/w17162482
Li M, Tan S, Huang J, Chen Q, Yu G. Laboratory-Scale Biochar-Aerated Constructed Wetlands for Low C/N Wastewater: Standardization and Legal Cooperation from a Watershed Restoration Perspective. Water. 2025; 17(16):2482. https://doi.org/10.3390/w17162482
Chicago/Turabian StyleLi, Mengbing, Sili Tan, Jiajun Huang, Qianhui Chen, and Guanlong Yu. 2025. "Laboratory-Scale Biochar-Aerated Constructed Wetlands for Low C/N Wastewater: Standardization and Legal Cooperation from a Watershed Restoration Perspective" Water 17, no. 16: 2482. https://doi.org/10.3390/w17162482
APA StyleLi, M., Tan, S., Huang, J., Chen, Q., & Yu, G. (2025). Laboratory-Scale Biochar-Aerated Constructed Wetlands for Low C/N Wastewater: Standardization and Legal Cooperation from a Watershed Restoration Perspective. Water, 17(16), 2482. https://doi.org/10.3390/w17162482