Investigation of the Influence of Pyrolysis Temperature on the Adsorption Performance of Municipal Sludge-Derived Biochar Toward Metal Ions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of the Adsorbents
2.3. Calculation Formulas and Fitting Models
2.4. Determination of Fe and Mn Concentrations
2.5. Regeneration and Practical Application Experiments
3. Results and Discussion
3.1. Characterization of Adsorbents
3.2. Effect of Pyrolysis Temperature on the Adsorption of Fe and Mn by Biochar
3.3. Kinetic and Isotherm Analysis of Fe and Mn Adsorption
3.4. Thermodynamic Analysis of Fe and Mn Adsorption
3.5. Adsorption Mechanism of Fe and Mn
3.6. Reusability Analysis of BC600 for Fe and Mn Adsorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bayar, J.; Ali, N.; Dong, Y.S.; Ahmad, U.; Anjum, M.M.; Khan, G.R.; Zaib, M.; Jalal, A.; Ali, R.; Ali, L. Biochar-based adsorption for heavy metal removal in water: A sustainable and cost-effective approach. Environ. Geochem. Health 2024, 46, 25. [Google Scholar] [CrossRef]
- Seo, C.; Lee, J.W.; Jeong, J.W.; Kim, T.S.; Lee, Y.M.; Gang, G.Y.G.; Lee, S.G. Current technologies for heavy metal removal from food and environmental resources. Food Sci. Biotechnol. 2024, 33, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Oh, Y.S.; Park, H.S.; Kim, D.K.; Lee, J.H. Steel slag-limestone reactor for Mn removal with tolerance to Fe: Experiments and mechanisms. J. Environ. Chem. Eng. 2022, 10, 7. [Google Scholar] [CrossRef]
- Idrees, M.; Batool, S.; Ullah, H.; Hussain, Q.; Al-Wabel, M.I.; Ahmad, M.; Hussain, A.; Riaz, M.; Ok, Y.S.; Kong, J. Adsorption and thermodynamic mechanisms of manganese removal from aqueous media by biowaste-derived biochars. J. Mol. Liq. 2018, 266, 373–380. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.Q.; Xing, Y.; Chen, M.; Gao, B. Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environ. Pollut. 2021, 273, 14. [Google Scholar] [CrossRef]
- Zubair, M.; Ihsanullah, I.; Aziz, H.A.; Ahmad, M.A.; Al-Harthi, M.A. Sustainable wastewater treatment by biochar/layered double hydroxide composites: Progress, challenges, and outlook. Bioresour. Technol. 2021, 319, 13. [Google Scholar] [CrossRef]
- Beesley, L.; Marmiroli, M.; Pagano, L.; Pigoni, V.; Fellet, G.; Fresno, T.; Vamerali, T.; Bandiera, M.; Marmiroli, N. Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.). Sci. Total Environ. 2013, 454, 598–603. [Google Scholar] [CrossRef]
- Hao, H.R.; Zhang, Q.; Qiu, Y.; Meng, L.; Wei, X.N.; Sang, W.J.; Tao, J.W. Insight into the degradation of Orange G by persulfate activated with biochar modified by iron and manganese oxides: Synergism between Fe and Mn. J. Water Process. Eng. 2020, 37, 8. [Google Scholar] [CrossRef]
- Chang, R.H.; Sohi, S.P.; Jing, F.Q.; Liu, Y.Y.; Chen, J.W. A comparative study on biochar properties and Cd adsorption behavior under effects of ageing processes of leaching, acidification and oxidation. Environ. Pollut. 2019, 254, 12. [Google Scholar] [CrossRef]
- Qiu, B.B.; Shao, Q.N.; Shi, J.C.; Yang, C.H.; Chu, H.Q. Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Sep. Purif. Technol. 2022, 300, 25. [Google Scholar] [CrossRef]
- Wang, Q.F.; Xiao, Y.; Qi, J.F.; Wei, H.X.; Zhao, J.J.; Lei, X.L.; Yang, D.M.; Huang, Y.Y.; Gao, P. A novel strategy for preparing porous Fe/Ca-loaded biochar transformed from municipal sludge towards phosphate removal. J. Water Process. Eng. 2024, 66, 13. [Google Scholar] [CrossRef]
- Al-Rashdi, B.; Somerfield, C.; Hilal, N. Heavy metals removal using adsorption and nanofiltration techniques. Sep. Purif. Rev. 2011, 40, 209–259. [Google Scholar] [CrossRef]
- Wang, C.M.; Li, S.J. Characterization and modelling of cadmium adsorption of biochar: Effect of pyrolysis temperature. Fresenius Environ. Bull. 2021, 30, 11781–11787. [Google Scholar]
- Yu, J.; Zhang, J.; Zeng, T.; Wang, H.; Sun, Y.P.; Chen, L.; Song, S.; Shi, H.X. Stable incorporation of MnOx quantum dots into N-doped hollow carbon: A synergistic peroxymonosulfate activator for enhanced removal of bisphenol A. Sep. Purif. Technol. 2019, 213, 264–275. [Google Scholar] [CrossRef]
- Yu, J.; Zeng, T.; Wang, H.; Zhang, H.; Sun, Y.; Chen, L.; Song, S.; Li, L.; Shi, H. Oxygen-defective MnO2−x rattle-type microspheres mediated singlet oxygen oxidation of organics by peroxymonosulfate activation. Chem. Eng. J. 2020, 394, 124458. [Google Scholar] [CrossRef]
- Xu, L.; Wu, C.X.; Chai, C.; Cao, S.Y.; Bai, X.; Ma, K.Y.; Jin, X.; Shi, X.; Jin, P.K. Adsorption of micropollutants from wastewater using iron and nitrogen co-doped biochar: Performance, kinetics and mechanism studies. J. Hazard. Mater. 2022, 424, 12. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.S.; Zhou, H.; Guo, J.; Xiao, Y.H.; Liu, C.; An, B.X.; Liang, Z.Q. Phosphate removal by Ca-modified magnetic sludge biochar prepared by a one-step hydrothermal method. Catalysts 2023, 13, 15. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.Y.; Yan, W.; He, C.; Shi, Y.J. MgFe2O4-biochar based lanthanum alginate beads for advanced phosphate removal. Chem. Eng. J. 2020, 387, 11. [Google Scholar] [CrossRef]
- Wang, K.F.; Yao, R.L.; Zhang, D.Q.; Peng, N.; Zhao, P.; Zhong, Y.M.; Zhou, H.J.; Huang, J.H.; Liu, C. Tetracycline adsorption performance and mechanism using calcium hydroxide-modified biochars. Toxics 2023, 11, 14. [Google Scholar] [CrossRef]
- Choi, Y.K.; Jang, H.M.; Kan, E.; Wallace, A.R.; Sun, W. Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar. Environ. Eng. Res. 2019, 24, 434–442. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, X.P.; Tang, Y.X.; Luo, J.Q.; Chen, J.; Lu, Y.X.; Wang, L.; Luo, Z.; Zhang, J.Q. ZVI/biochar derived from amino-modified corncob and its phosphate removal properties in aqueous solution. J. Water Process. Eng. 2022, 49, 14. [Google Scholar] [CrossRef]
- Ou, W.J.; Lan, X.; Guo, J.; Cai, A.M.; Liu, P.; Liu, N.; Liu, Y.Y.; Lei, Y.T. Preparation of iron/calcium-modified biochar for phosphate removal from industrial wastewater. J. Clean Prod. 2023, 383, 10. [Google Scholar] [CrossRef]
- Dong, L.L.; Li, Y.; Wen, X.L.; Zhao, M.F.; Zhang, L.; Zhu, M.M.; Wan, S.L. A new strategy for enhanced phosphate removal from waters using ferric oxide impregnated biochar. Chem. Eng. J. 2024, 485, 11. [Google Scholar] [CrossRef]
- Zhou, Y.-T.; Nie, H.-L.; Branford-White, C.; He, Z.-Y.; Zhu, L.-M. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J. Colloid Interface Sci. 2009, 330, 29–37. [Google Scholar] [CrossRef]
- Yi, Y.; Wang, X.Y.; Ma, J.; Ning, P. Fe(III) modified Egeria najas driven-biochar for highly improved reduction and adsorption performance of Cr(VI). Powder Technol. 2021, 388, 485–495. [Google Scholar] [CrossRef]
- Pan, F.; Wei, H.; Huang, Y.L.; Song, J.Q.; Gao, M.J.; Zhang, Z.H.; Teng, R.J.; Jing, S.S. Phosphorus adsorption by calcium chloride-modified buckwheat hulls biochar and the potential application as a fertilizer. J. Clean Prod. 2024, 444, 13. [Google Scholar] [CrossRef]
- Xie, Y.H.; Wu, Y.L.; Qin, Y.H.; Yi, Y.; Liu, Z.; Lv, L.; Xu, M. Evaluation of perchlorate removal from aqueous solution by cross-linked magnetic chitosanipoly (vinyl alcohol) particles. J. Taiwan Inst. Chem. Eng. 2016, 65, 295–303. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.H.; Huo, Y.Z.; Ai, Y.J.; Gu, P.C.; Wang, X.X.; Li, Q.; Yu, S.J.; Chen, Y.T.; Yu, Z.M.; et al. Efficient elimination of Cr(VI) from aqueous solutions using sodium dodecyl sulfate intercalated molybdenum disulfide. Ecotox. Environ. Safe. 2019, 175, 251–262. [Google Scholar] [CrossRef]
- Sun, C.M.; Li, C.X.; Wang, C.H.; Qu, R.J.; Niu, Y.Z.; Geng, H.B. Comparison studies of adsorption properties for Hg(II) and Au(III) on polystyrene-supported bis-8-oxyquinoline-terminated open-chain crown ether. Chem. Eng. J. 2012, 200, 291–299. [Google Scholar] [CrossRef]
- Tan, W.; Li, G.Z.; Bai, M.; Yang, M.; Peng, J.H.; Barrow, C.J.; Yang, W.R.; Wang, H.B. The study of adsorption mechanism of mixed pesticides prometryne-acetochlor in the soil-water system. Int. Biodeterior. Biodegrad. 2015, 102, 281–285. [Google Scholar] [CrossRef]
- Hu, C.; Jiang, J.Y.; Li, Y.F.; Wu, Y.Y.; Ma, J.Y.; Li, H.; Zheng, H.L. Eco-friendly poly(dopamine)-modified glass microspheres as a novel self-floating adsorbent for enhanced adsorption of tetracycline. Sep. Purif. Technol. 2022, 292, 11. [Google Scholar] [CrossRef]
- Blanes, P.S.; Bordoni, M.E.; González, J.C.; García, S.I.; Atria, A.M.; Sala, L.F.; Bellú, S.E. Application of soy hull biomass in removal of Cr(VI) from contaminated waters. Kinetic, thermodynamic and continuous sorption studies. J. Environ. Chem. Eng. 2016, 4, 516–526. [Google Scholar] [CrossRef]
- Enniya, I.; Rghioui, L.; Jourani, A. Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels. Sustain. Chem. Pharm. 2018, 7, 9–16. [Google Scholar] [CrossRef]
- Lonappan, L.; Rouissi, T.; Brar, S.K.; Verma, M.; Surampalli, R.Y. An insight into the adsorption of diclofenac on different biochars: Mechanisms, surface chemistry, and thermodynamics. Bioresour. Technol. 2018, 249, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Xin, Z.B.; Peng, F.; Ma, M.G. Influence of pyrolysis temperature on characteristics and nitrobenzene adsorption capability of biochar derived from reed and giant reed. Sci. Adv. Mater. 2019, 11, 1523–1530. [Google Scholar] [CrossRef]
- Yao, B.; Zeng, W.Q.; Núñez-Delgado, A.; Zhou, Y.Y. Simultaneous adsorption of ciprofloxacin and Cu2+ using Fe and N co-doped biochar: Competition and selective separation. Waste Manag. 2023, 168, 386–395. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Q.; Li, Y.X.; Cai, Z.Y.; Wang, Z.G.; Huang, W.; Yu, P. In situ generation of Cu(III) synergized with crystalline amorphous strong interfacial interaction for autocatalytic degradation of LEV. Water Res. 2025, 284, 11. [Google Scholar] [CrossRef]
- Wei, H.X.; Zhao, J.J.; Rahaman, M.H.; Zhu, M.; Zhai, J. Enhanced peroxymonosulfate activation for carbamazepine degradation under strongly alkaline conditions using Cu-doped Mn3O4 catalyst: Characterization, catalytic performance, and mechanism insights. J. Clean Prod. 2023, 429, 13. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Tran, H.N.; Liu, Y.A.; Yang, C.; Zhang, T.W.; Guo, J.Q.; Zhu, W.Y.; Ahmad, M.; Xiao, H.N.; Song, J.L. Nitrogen-doped magnetic biochar made with K3Fe(C2O4)3 to adsorb dyes: Experimental approach and density functional theory modeling. J. Clean Prod. 2023, 383, 10. [Google Scholar] [CrossRef]
Adsorbents | Surface Area (m2/g) | Pore Diameter (nm) | Pore Volume (cm3/g) |
---|---|---|---|
BC300 | 69.67 | 1.913 | 0.120 |
BC400 | 70.53 | 1.516 | 0.116 |
BC500 | 97.08 | 1.768 | 0.043 |
BC600 | 102.87 | 1.757 | 0.172 |
BC700 | 95.74 | 1.775 | 0.166 |
Surface Area (m2/g) | Pore Diameter (nm) | Pore Volume (cm3/g) | ||
---|---|---|---|---|
Pyrolysis temperature | coefficient | 0.700 | −0.100 | 0.500 |
p | 0.188 | 0.873 | 0.391 | |
sample size | 5 | 5 | 5 |
Pseudo First Order | Pseudo Second Order | Elovich | |||||||
---|---|---|---|---|---|---|---|---|---|
Qe (mg·g1) | K1 (min−1) | R2 | Qe (mg·g−1) | K2 (g/mg·min) | R2 | α (mg·g−1·min) | β (g/mg) | R2 | |
Fe | 1.988 | 1.593 | 0.999 | 2.015 | 1.862 | 0.999 | 1.719 | 13.886 | 0.984 |
Mn | 1.040 | 0.082 | 0.798 | 1.136 | 0.118 | 0.869 | 1.071 | 6.079 | 0.948 |
Isotherm Models | Parameters | T (K) | ||
---|---|---|---|---|
288 | 298 | 308 | ||
Langmuir model | Qm (mg·g−1) | 12.368 | 14.189 | 15.212 |
KL (L·mg−1) | 91.266 | 107.788 | 143.355 | |
R2 | 0.815 | 0.950 | 0.914 | |
Freundlich model | n | 8.292 | 9.231 | 8.995 |
1/n | 0.121 | 0.108 | 0.111 | |
KF ((mg·g−1)(L·mg−1)1/n) | 10.176 | 11.444 | 12.269 | |
R2 | 0.829 | 0.766 | 0.820 | |
Temkin model | AT (mL·mg−1) | 7666.475 | 23,909.592 | 27,457.243 |
BT (J·mol−1) | 1969.408 | 2042.707 | 1989.158 | |
R2 | 0.913 | 0.846 | 0.878 | |
Sips model | Qm (mg·g−1) | 15.253 | 14.144 | 15.887 |
Ks (L·mg−1) | 16.369 | 109.633 | 96.512 | |
γ | 0.418 | 1.055 | 0.619 | |
R2 | 0.932 | 0.943 | 0.908 |
Isotherm Models | Parameters | T (K) | ||
---|---|---|---|---|
288 | 298 | 308 | ||
Langmuir model | Qm(mg·g−1) | 1.314 | 1.633 | 1.701 |
KL (L·mg−1) | 0.577 | 3.597 | 3.838 | |
R2 | 0.971 | 0.877 | 0.858 | |
Freundlich model | n | 3.403 | 5.747 | 5.574 |
1/n | 0.294 | 0.174 | 0.179 | |
KF ((mg·g−1)(L·mg−1)1/n) | 0.558 | 1.094 | 1.139 | |
R2 | 0.852 | 0.741 | 0.766 | |
Temkin model | AT (mL·mg−1) | 6.161 | 141.479 | 141.543 |
BT (J·mol−1) | 8846.145 | 10,968.638 | 10,792.987 | |
R2 | 0.932 | 0.797 | 0.812 | |
Sips model | Qm (mg·g−1) | 1.178 | 1.532 | 1.595 |
Ks (L·mg−1) | 0.695 | 4.187 | 4.825 | |
γ | 1.505 | 5.204 | 6.562 | |
R2 | 0.989 | 0.955 | 0.887 |
T (K) | Kd | (KJ/mol) | (kJ/mol) | (kJ/mol K) | |
---|---|---|---|---|---|
Fe | 288 | 1.217 | −0.470 | ||
298 | 2.218 | −1.974 | 33.117 | 0.117 | |
308 | 2.977 | −2.794 | |||
Mn | 288 | 0.397 | 2.318 | ||
298 | 3.930 | −3.391 | 94.422 | 0.320 | |
308 | 4.806 | −4.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wang, Q.; Cheng, Y.; Qin, L.; Zhao, Y.; Tang, Y.; Sun, D. Investigation of the Influence of Pyrolysis Temperature on the Adsorption Performance of Municipal Sludge-Derived Biochar Toward Metal Ions. Water 2025, 17, 2459. https://doi.org/10.3390/w17162459
Yang X, Wang Q, Cheng Y, Qin L, Zhao Y, Tang Y, Sun D. Investigation of the Influence of Pyrolysis Temperature on the Adsorption Performance of Municipal Sludge-Derived Biochar Toward Metal Ions. Water. 2025; 17(16):2459. https://doi.org/10.3390/w17162459
Chicago/Turabian StyleYang, Xiaomin, Quanfeng Wang, Yuanling Cheng, Long Qin, Yan Zhao, Yanglu Tang, and Da Sun. 2025. "Investigation of the Influence of Pyrolysis Temperature on the Adsorption Performance of Municipal Sludge-Derived Biochar Toward Metal Ions" Water 17, no. 16: 2459. https://doi.org/10.3390/w17162459
APA StyleYang, X., Wang, Q., Cheng, Y., Qin, L., Zhao, Y., Tang, Y., & Sun, D. (2025). Investigation of the Influence of Pyrolysis Temperature on the Adsorption Performance of Municipal Sludge-Derived Biochar Toward Metal Ions. Water, 17(16), 2459. https://doi.org/10.3390/w17162459