Designing Nature-Based Solutions for Sediment Control in Impaired Humid Subtropical Forests: An Approach Based on the Environmental Benefits Assessment
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. NBSWT Planning and Sizing
2.3. Inputs and Outputs Assessed
2.4. Shadow Prices Methodology
3. Results and Discussion
3.1. Results of the NBSWT Volume and Sizing Design
3.2. Environmental Benefit of Sediment Retention by the Proposed NBSWT
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hosseiny, H.; Crimmins, M.; Smith, V.B.; Kremer, P. A Generalized Automated Framework for Urban Runoff Modeling and Its Application at a Citywide Landscape. Water 2020, 12, 357. [Google Scholar] [CrossRef]
- Wang, C.; Hu, J.; Zhang, Y.; Di, Y.; Wu, X. Spatial distribution characteristic, source apportionment, and risk assessment of heavy metals in the soil of an urban riparian zone. Ecotoxicol. Environ. Saf. 2025, 298, 118271. [Google Scholar] [CrossRef]
- Masi, F.; Rizzo, A.; Regelsberger, M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J. Environ. Manag. 2018, 216, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Castañer, C.M.; Mesquita Pellegrino, P.R. Sustainable Urban Drainage Designing Approach for São Paulo and Humid Sub-tropical Climates. In Green Technologies and Infrastructure to Enhance Urban Ecosystem Services, SSC 2018; Vasenev, V., Dovletyarova, E., Cheng, Z., Valentini, R., Calfapietra, C., Eds.; Springer Geography; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Mânica, A.N.; Rocha, C.; Silva Araújo, L.; Gomes, R.S.; de Lima Isaac, R. From forest to urban: Assessing the impact of land cover on water quality. J. Environ. Manag. 2025, 386, 125739. [Google Scholar] [CrossRef]
- Allmanová, Z.; Vlčková, M.; Jankovský, M.; Allman, M.; Merganič, J. How can stream bank erosion be predicted on small water courses? Verification of BANCS model on the Kubrica watershed. Int. J. Sediment Res. 2021, 36, 419–429. [Google Scholar] [CrossRef]
- EPA. NPS Outreach Toolbox. 2021. Available online: https://cfpub.epa.gov/npstbx/ (accessed on 26 May 2025).
- Ekanayake, D.; Aryal, R.; Hasan Johir, M.A.; Loganathan, P.; Bush, C.; Kandasamy, J.; Vigneswaran, S. Interrelationship among the pollutants in stormwater in an urban catchment and first flush identification using UV spectroscopy. Chemosphere 2019, 233, 245–251. [Google Scholar] [CrossRef]
- Da Silva, I.A.; Dupas, F.A.; Costa, C.; Medeiros, G.; De Souza, A. Spatiotemporal changes in land cover land use in protected areas of Serra da Mantiqueira, Southeastern Brazil. Environ. Chall. 2021, 4, 100195. [Google Scholar] [CrossRef]
- Le Saout, S.; Hoffmann, M.; Shi, Y.; Hughes, A.; Rodrigues, A.S.L. Protected Areas and Effective Biodiversity Conservation. Science 2013, 342, 803–805. [Google Scholar] [CrossRef] [PubMed]
- Castañer, C.M.; Alonso, M.; Ruchti, V. The bicycle as a sustainable transport mode for the City of São Paulo: The North-South Trail case study. LABVERDE 2015, 1, 34. [Google Scholar]
- Nicholson, A.R.; O’Donnell, G.M.; Wilkinson, M.E.; Quinn, P.F. The potential of runoff attenuation features as a Natural Flood Management approach. J. Flood Risk. Manag. 2020, 13, e12565. [Google Scholar] [CrossRef]
- Roberts, M.T.; Geris, J.; Hallett, P.D.; Wilkinson, M.E. Mitigating floods and attenuating surface runoff with temporary storage areas in headwaters. WIREs Water 2023, 10, e1634. [Google Scholar] [CrossRef]
- Wilkinson, M.E.; Quinn, P.F.; Welton, P. Runoff management during the September 2008 floods in the Belford catchment, Northumberland. J. Flood Risk Manag. 2010, 3, 285–295. [Google Scholar] [CrossRef]
- Fennell, J.; Soulsby, C.; Wilkinson, M.E.; Daalmans, R.; Geris, J. Time variable effectiveness and cost-benefits of different nature-based solution types and design for drought and flood management. Nat.-Based Solut. 2023, 3, 100050. [Google Scholar] [CrossRef]
- Khalil, S.; Freeman, A.; Raynie, R. Sediment management for sustainable ecosystem restoration of coastal Louisiana. Shore Beach 2018, 86, 17–27. [Google Scholar]
- Birol, E.; Koundouri, P.; Kountouris, Y. Assessing the economic viability of alternative water resources in water-scarce regions: Combining economic valuation, cost-benefit analysis and discounting. Ecol. Econ. 2010, 69, 839–847. [Google Scholar] [CrossRef]
- Hernández-Sancho, F.; Lamizana-Diallo, B.; Mateo-Sagasta, J.; Qadir, M. Economic Valuation of Wastewater: The Cost of Action and the Cost of No Action; UNEP: Nairobi, Kenya, 2015; p. 68. Available online: https://www.unep.org/resources/report/economic-valuation-wastewater-cost-action-and-cost-no-action (accessed on 26 May 2025).
- Bellver-Domingo, A.; Hernández-Sancho, F. Environmental Benefit of Improving Wastewater Quality: A Shadow Prices Approach for Sensitive Areas. Water Econs. Policy 2017, 4, 1750008. [Google Scholar] [CrossRef]
- EFC—Environmental Finance Center. Estimating Benefits and Costs of Stormwater Management. Sacramento State. 2019. Available online: https://www.efc.csus.edu/reports/efc-cost-project-part-1.pdf (accessed on 20 November 2024).
- Wang, J.; Chua Shanahan, P. Field Evaluation of Hydrological Performance of a Bioretention Basin in an Urban Tropical Catchment. In Urban Water Systems & Floods; WIT Transaction on the Built Environment; WIT Press: Southampton, UK, 2016; Volume 165. [Google Scholar]
- MDNR. The Missouri Botanical Garden Rainscaping Guide, Mabel Dorn Reeder Foundation and US EPA Region 7 Through the Missouri Department of Natural Resources (Subgrant Number G11-NPS-15), Under Section 319 of the Clean Water Act; MDNR: Jefferson, MO, USA, 2022. [Google Scholar]
- Burszta-Adamiak, E.; Biniak-Pieróg, M.; Dąbek, P.B.; Sternik, A. Rain garden hydrological performance—Responses to real rainfall events. Sci. Total Environ. 2023, 887, 164153. [Google Scholar] [CrossRef]
- Sartor, J.D.; Boyd, G.B. Water Pollution Aspects of Street Surface Contaminants; EPA-R2-72-081; US EPA: Washington, DC, USA, 1974.
- Muthusamy, M.; Tait, S.; Schellart, A.; Beg, N.A. Improving understanding of the underlying physical process of sediment wash-off from urban road surfaces. J. Hydrol. 2017, 557, 426–433. [Google Scholar] [CrossRef]
- Haith, D.A.; Shoenaker, L.L. Generalized watershed loading functions for stream flow nutrients. JAWRA J. Am. Water Resour. Assoc. 1987, 23, 471–478. [Google Scholar] [CrossRef]
- IRRIGART. Municipal Plan for the Water Resources in the Municipality of Sapucaí-Mirim; Águas da Mantiqueira: São Paulo, Brazil, 2013. [Google Scholar]
- MPCA—Minnesota Pollution Control Agency. BMP Practices Construction Costs Maintenance Costs and Land Requirements. In Minnesota Stormwater Manual; Minnesota Pollution Control Agency: St Paul, MN, USA, 2018. [Google Scholar]
- Färe, R.; Grosskopf, S.; Weber, W.L. Shadow prices and pollution costs in U.S. agriculture. Ecol. Econ. 2006, 56, 89–103. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Mocholí-Arce, M.; Sala-Garrido, R. Estimating the environmental and resource costs of leakage in water distribution systems: A shadow price approach. Sci. Total Environ. 2016, 568, 180–188. [Google Scholar] [CrossRef]
- Chung, Y.H.; Färe, R.; Grosskopf, S. Productivity and Undesirable Outputs: A Directional Distance Function Approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef]
- Bellenger, M.J.; Herlihy, A.T. Performance-based environmental index weights: Are all metrics created equal? Ecol. Econ. 2010, 69, 1043–1050. [Google Scholar] [CrossRef]
- Molinos-Senante, M.; Hanley, N.; Sala-Garrido, R. Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach. Appl. Energy 2015, 144, 241–249. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S.; Noh, D.; Weber, W. Characteristics of a polluting technology: Theory and practice. J. Econom. 2005, 126, 469–492. [Google Scholar] [CrossRef]
- Wei, C.; Löschel, A.; Liu, B. An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises. Energy Econ. 2013, 40, 22–31. [Google Scholar] [CrossRef]
- Aigner, D.J.; Chu, S.F. On Estimating the Industry Production Function. Am. Econ. Rev. 1968, 58, 826–839. [Google Scholar]
- Novotny, V. Nonpoint Pollution and Urban Stormwater Management; Technomic Publishing Co., Inc.: Lancaster, PA, USA, 1995. [Google Scholar]
- Todeschini, S. Innovative and Reliable Assessment of Polluted Stormwater Runoff for Effective Stormwater Management. Water 2024, 16, 16. [Google Scholar] [CrossRef]
- Woods-Ballard, W.; Wilson, S.; Udale-Clarke, H.; Illman, S.; Scott, T.; Ashley, R.; Kellagher, R. The SUDS Manual; CIRIA C697; CIRIA: London, UK, 2015. [Google Scholar]
- Wilkes, M.A.; Gittins, J.R.; Mathers, K.L.; Mason, R.; Casas-Mulet, R.; Vanzo, D.; Mckenzie, M.; Murray-Bligh, J.; England, J.; Gurnell, A. Physical and biological controls on fine sediment transport and storage in rivers. WIREs Water 2019, 6, e1331. [Google Scholar] [CrossRef]
- Bellver-Domingo, Á.; Castellet-Viciano, L.; Hernández-Chover, V.; Hernández-Sancho, F. The Quantification of Non-Action Costs as an Incentive to Address Water Pollution Problems. Water 2023, 15, 582. [Google Scholar] [CrossRef]
- Djodjic, F.; Geranmayeh, P.; Collentine, D.; Markensten, H.; Futter, M. Cost effectiveness of nutrient retention in constructed wetlands at a landscape level. J. Environ. Manag. 2022, 324, 116325. [Google Scholar] [CrossRef]
- Jamion, N.A.; Lee, K.E.; Mokhtar, M.; Goh, T.L.; Simon, N.; Goh, C.T.; Bhat, I.U.H. The integration of nature values and services in the nature-based solution assessment framework of constructed wetlands for carbon–water nexus in carbon sequestration and water security. Environ. Geochem. Health. 2022, 45, 1201–1230. [Google Scholar] [CrossRef]
- Li, D.; Chu, Z.; Li, P.; Xu, W.; Wang, E.; Jin, C.; Zheng, B. Impacts of landscape spatial configuration of integrated multi-pond constructed wetlands in a basin on the treatment of non-point source pollution. J. Clean. Prod. 2023, 383, 135389. [Google Scholar] [CrossRef]
- Yang, F.; Gato-Trinidad, S.; Hossain, I. Understanding the issues in monitoring the treatment effectiveness of constructed wetlands in urban areas—A case study in greater Melbourne, Australia. Environ. Sci. Water Res. Technol. 2021, 7, 1443–1452. [Google Scholar] [CrossRef]
- Robotham, J.; Old, G.; Rameshwaran, P.; Sear, D.; Trill, E.; Bishop, J.; Gasca-Tucker, D.; Old, J.; McKnight, D. Nature-based solutions enhance sediment and nutrient storage in an agricultural lowland catchment. Earth Surf. Process. Landforms 2023, 48, 243–258. [Google Scholar] [CrossRef]
- Le Coent, P.; Graveline, N.; Altamirano, M.A.; Arfaoui, N.; Benitez-Avila, C.; Biffin, T.; Calatrava, J.; Dartee, K.; Douai, A.; Gnonlonfin, A. Is it worth investing in NBS aiming at reducing water risks? Insights from the economic assessment of three European case studies. Nat.-Based Solut. 2021, 1, 100002. [Google Scholar] [CrossRef]
- Alicia, G.; Lester, M.; Ila, S.; Diana, L.; Werbowski Larissa, M.; Xia, Z.; Jelena, G.; Chelsea, R. Multiyear Water Quality Performance and Mass Accumulation of PCBs, Mercury, Methylmercury, Copper, and Microplastics in a Bioretention Rain Garden. J. Sustain. Water Built Environ. 2019, 5, 04019004. [Google Scholar] [CrossRef]
- Gülbaz, S.; Kazezyılmaz-Alhan, C.M.; Copty, N.K. Evaluation of Heavy Metal Removal Capacity of Bioretention Systems. Water Air Soil Pollut. 2015, 226, 376. [Google Scholar] [CrossRef]
- Shrestha, P.; Hurley, S.E.; Wemple, B.C. Effects of different soil media, vegetation, and hydrologic treatments on nutrient and sediment removal in roadside bioretention systems. Ecol. Eng. 2018, 112, 116–131. [Google Scholar] [CrossRef]
- You, Z.; Zhang, L.; Pan, S.; Chiang, P.; Pei, S.; Zhang, S. Performance evaluation of modified bioretention systems with alkaline solid wastes for enhanced nutrient removal from stormwater runoff. Water Res. 2019, 161, 61–73. [Google Scholar] [CrossRef]
- Mancuso, G.; Bencresciuto, G.F.; Lavrnić, S.; Toscano, A. Diffuse Water Pollution from Agriculture: A Review of Nature-Based Solutions for Nitrogen Removal and Recovery. Water 2021, 13, 1893. [Google Scholar] [CrossRef]
- Johannesson, K.M.; Kynkäänniemi, P.; Ulén, B.; Weisner, S.E.B.; Tonderski, K.S. Phosphorus and particle retention in constructed wetlands—A catchment comparison. Ecol. Eng. 2015, 80, 20–31. [Google Scholar] [CrossRef]
- La Notte, A.; Maes, J.; Grizzetti, B.; Bouraoui, F.; Zulian, G. Spatially explicit monetary valuation of water purification services in the Mediterranean bio-geographical region. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 26–34. [Google Scholar] [CrossRef]
- Tal-maon, M.; Portman, M.E.; Broitman, D.; Housh, M. Identifying the optimal type and locations of natural water retention measures using spatial modeling and cost-benefit analysis. J. Environ. Manag. 2024, 368, 122229. [Google Scholar] [CrossRef]
- Koutsovili, E.I.; Tzoraki, O.; Kalli, A.A.; Provatas, S.; Gaganis, P. Participatory approaches for planning nature-based solutions in flood vulnerable landscapes. Environ. Sci. Policy 2023, 140, 12–23. [Google Scholar] [CrossRef]
- Jiang, C.; Li, J.; Li, H.; Li, Y.; Chen, L. Field Performance of Bioretention Systems for Runoff Quantity Regulation and Pollutant Removal. Water Air Soil Pollut. 2017, 228, 468. [Google Scholar] [CrossRef]
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-Based Solutions to Address Global Societal Challenges; International Union for Conservation of Nature (IUCN): Gland, Switzerland, 2016. [Google Scholar]
- Skrydstrup, J.; Löwe, R.; Gregersen, I.B.; Koetse, M.; Aerts Jeroen, C.J.H.; de Ruiter, M.; Arnbjerg-Nielsen, K. Assessing the recreational value of small-scale nature-based solutions when planning urban flood adaptation. J. Environ. Manag. 2022, 320, 115724. [Google Scholar] [CrossRef] [PubMed]
- Souliotis, I.; Voulvoulis, N. Operationalising nature-based solutions for the design of water management interventions. Nat.-Based Solut. 2022, 2, 100015. [Google Scholar] [CrossRef]
- Van Oijstaeijen, W.; Van Passel, S.; Cools, J. Urban green infrastructure: A review on valuation toolkits from an urban planning perspective. J. Environ. Manag. 2020, 267, 110603. [Google Scholar] [CrossRef] [PubMed]
- González-García, A.; Palomo, I.; Codemo, A.; Rodeghiero, M.; Dubo, T.; Vallet, A.; Lavorel, S. Co-benefits of nature-based solutions exceed the costs of implementation. Cell Rep. Sustain. 2025, 2, 100336. [Google Scholar] [CrossRef]
- Ashrafizadeh, E.; Yousefpour, R. Quantifying and valuing forests as a nature-based solution for ecosystem-based disaster risk reduction: A systematic review. Nat.-Based Solut. 2025, 7, 100242. [Google Scholar] [CrossRef]
- Chelli, A.; Brander, L.; Geneletti, D. Cost-Benefit analysis of urban nature-based solutions: A systematic review of approaches and scales with a focus on benefit valuation. Ecosyst. Serv. 2025, 71, 101684. [Google Scholar] [CrossRef]
Built-Up Area (m2) | Water Volume Subcatchment (m3) | Street Length (m) | NBSWT Area (m2) | NBSWT Width (m) | |
---|---|---|---|---|---|
NBSWT1 | 2178 | 52.27 | 50 | 75 | 1.5 |
NBSWT2 | 676 | 16.22 | 24 | 24 | 1 |
NBSWT3 | 6692 | 160.61 | 80 | 200 | 2.5 |
NBSWT4 | 3679 | 88.29 | 42 | 105 | 2.5 |
NBSWT5 | 6759 | 162.22 | 100 | 250 | 2.5 |
NBSWT6 | 13,529 | 324.69 | 250 | 500 | 2 |
NBSWT7 | 5292 | 127.01 | 250 | 250 | 1 |
NBSWT8 | 11,607 | 278.57 | 195 | 390 | 2 |
NBSWT9 | 7723 | 185.35 | 190 | 285 | 1.5 |
NBSWT10 | 5714 | 137.14 | 75 | 187.5 | 2.5 |
NBSWT11 | 6527 | 156.65 | 105 | 210 | 2 |
NBSWT12 | 2748 | 65.95 | 70 | 140 | 2 |
NBSWT13 | 5468 | 131.23 | 115 | 230 | 2 |
NBSWT14 | 6753 | 162.07 | 130 | 260 | 2 |
NBSWT15 | 5597 | 134.33 | 100 | 200 | 2 |
Water Quality Volume (m3) | Sediment NBSWT (kg) | Built-Up Mass (B) (g/m2) | Accumulation (b) | Max Accumulation (a) (g/m2) | Dry Days (t) (Days) | |
---|---|---|---|---|---|---|
NBSWT1 | 18.75 | 12.2 | 6.998 | 0.015 | 27 | 20 |
NBSWT2 | 6 | 3.8 | 6.998 | 0.015 | 27 | 20 |
NBSWT3 | 50 | 37.5 | 6.998 | 0.015 | 27 | 20 |
NBSWT4 | 26.3 | 20.6 | 6.998 | 0.015 | 27 | 20 |
NBSWT5 | 62.5 | 37.8 | 6.998 | 0.015 | 27 | 20 |
NBSWT6 | 125 | 75.7 | 6.998 | 0.015 | 27 | 20 |
NBSWT7 | 62.5 | 29.6 | 6.998 | 0.015 | 27 | 20 |
NBSWT8 | 97.5 | 64.9 | 6.998 | 0.015 | 27 | 20 |
NBSWT9 | 71.3 | 43.2 | 6.998 | 0.015 | 27 | 20 |
NBSWT10 | 46.9 | 31.9 | 6.998 | 0.015 | 27 | 20 |
NBSWT11 | 52.5 | 36.5 | 6.998 | 0.015 | 27 | 20 |
NBSWT12 | 35 | 15.4 | 6.998 | 0.015 | 27 | 20 |
NBSWT13 | 57.5 | 30.6 | 6.998 | 0.015 | 27 | 20 |
NBSWT14 | 65 | 37.8 | 6.998 | 0.015 | 27 | 20 |
NBSWT15 | 50 | 31.3 | 6.998 | 0.015 | 27 | 20 |
Water Quality Volume (m3) | Sediment NBSWT (kg) | |||
---|---|---|---|---|
1 Rainstorm | 6 Rainstorms | 1 Rainstorm | 6 Rainstorms | |
NBSWT1 | 18.8 | 112.5 | 12.2 | 73.2 |
NBSWT2 | 6 | 36 | 3.8 | 22.7 |
NBSWT3 | 50 | 300 | 37.5 | 224.8 |
NBSWT4 | 26.3 | 157.5 | 20.6 | 123.6 |
NBSWT5 | 62.5 | 375 | 37.8 | 227 |
NBSWT6 | 125 | 750 | 75.7 | 454.4 |
NBSWT7 | 62.5 | 375 | 29.6 | 177.8 |
NBSWT8 | 97.5 | 585 | 64.9 | 389.9 |
NBSWT9 | 71.3 | 427.5 | 43.2 | 259.4 |
NBSWT10 | 46.9 | 281.3 | 31.9 | 191.9 |
NBSWT11 | 52.5 | 315 | 36.5 | 219.2 |
NBSWT12 | 35 | 210 | 15.4 | 92.3 |
NBSWT13 | 57.5 | 345 | 30.6 | 183.7 |
NBSWT14 | 65 | 390 | 37.8 | 226.8 |
NBSWT15 | 50 | 300 | 31.3 | 188 |
Output 1 | Output 2 |
Construction Costs (USD) | Operation and Maintenance Costs (USD/year) | |
---|---|---|
NBSWT1 | 28,200 | 2775 |
NBSWT2 | 9024 | 888 |
NBSWT3 | 75,200 | 7400 |
NBSWT4 | 39,480 | 3885 |
NBSWT5 | 94,000 | 9250 |
NBSWT6 | 188,000 | 18,500 |
NBSWT7 | 94,000 | 9250 |
NBSWT8 | 146,640 | 14,430 |
NBSWT9 | 107,160 | 10,545 |
NBSWT10 | 70,500 | 6938 |
NBSWT11 | 78,960 | 7770 |
NBSWT12 | 52,640 | 5180 |
NBSWT13 | 86,480 | 8510 |
NBSWT14 | 97,760 | 9620 |
NBSWT15 | 75,200 | 7400 |
Input 1 |
Environmental Benefit (USD/Year) | |
---|---|
NBSWT1 | 38,774 |
NBSWT2 | 12,034 |
NBSWT3 | 119,135 |
NBSWT4 | 65,496 |
NBSWT5 | 120,328 |
NBSWT6 | 240,852 |
NBSWT7 | 94,211 |
NBSWT8 | 206,635 |
NBSWT9 | 137,490 |
NBSWT10 | 101,724 |
NBSWT11 | 116,198 |
NBSWT12 | 48,921 |
NBSWT13 | 97,345 |
NBSWT14 | 120,221 |
NBSWT15 | 99,641.5 |
TOTAL | 1,619,010.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellver-Domingo, Á.; Machí-Castañer, C.; Hernández-Sancho, F. Designing Nature-Based Solutions for Sediment Control in Impaired Humid Subtropical Forests: An Approach Based on the Environmental Benefits Assessment. Water 2025, 17, 2381. https://doi.org/10.3390/w17162381
Bellver-Domingo Á, Machí-Castañer C, Hernández-Sancho F. Designing Nature-Based Solutions for Sediment Control in Impaired Humid Subtropical Forests: An Approach Based on the Environmental Benefits Assessment. Water. 2025; 17(16):2381. https://doi.org/10.3390/w17162381
Chicago/Turabian StyleBellver-Domingo, Águeda, Carme Machí-Castañer, and Francesc Hernández-Sancho. 2025. "Designing Nature-Based Solutions for Sediment Control in Impaired Humid Subtropical Forests: An Approach Based on the Environmental Benefits Assessment" Water 17, no. 16: 2381. https://doi.org/10.3390/w17162381
APA StyleBellver-Domingo, Á., Machí-Castañer, C., & Hernández-Sancho, F. (2025). Designing Nature-Based Solutions for Sediment Control in Impaired Humid Subtropical Forests: An Approach Based on the Environmental Benefits Assessment. Water, 17(16), 2381. https://doi.org/10.3390/w17162381