Removal of HF via CaCl2-Modified EAF Slag: A Waste-Derived Sorbent Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. EAF Slag
2.2. HF Wastewater Solution
2.3. Batch Adsorption Experiments
2.4. Analytical Methods
2.5. Adsorption Isotherm Models
3. Results and Discussion
3.1. Fluoride Removal Characteristics of Modified Slag for Different Particle Sizes
3.2. Fluoride Removal Characteristics of Modified Slag at Different Temperatures
3.3. Fluoride Removal Characteristics of Modified Slag for Different Initial pH
3.4. Isotherm Modeling of Fluoride Adsorption onto EAF Slag
3.5. XRD Analysis
3.6. Post-Adsorption Leaching Behavior of Heavy Metals from EAF Slag
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
A–G | Akermanite–gehlenite |
As | Arsenic |
B | Raw (unmodified) slag |
C1 | CaCl2-modified slag (0.5 M) |
C2 | CaCl2-modified slag (1.0 M) |
Cd | Cadmium |
Cr | Chromium |
Cu | Copper |
D | Dicalcium silicate |
D1 | Particle size: 850–1700 μm |
D2 | Particle size: 250–850 μm |
D3 | Particle size: <250 μm |
EAF | Electric arc furnace |
EOS | Oxidized slag |
ERS | Reduced slag |
HF | Hydrofluoric acid |
ICP-MS | Inductively coupled plasma mass spectrometry |
Pb | Lead |
XRD | X-ray diffraction |
References
- Fortune Business Insights. Semiconductor & Electronics Market Size, Share, Trends, and Forecast, 2024; Fortune Business Insights: Pune, India, 2024; Available online: https://www.fortunebusinessinsights.com (accessed on 16 May 2025).
- An, M.K.; Kim, K.Y.; Ryu, H.D.; Lee, S.I. Treatment of fluoride in semiconductor wastewater by using fluidized bed reactor. J. Korean Soc. Environ. Eng. 2010, 32, 437–442. [Google Scholar]
- Dar, F.A.; Kurella, S. Recent advances in adsorption techniques for fluoride removal—An overview. Groundw. Sustain. Dev. 2023, 23, 101017. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kumar, E.; Sillanpää, M. Fluoride removal from water by adsorption—A review. Chem. Eng. J. 2011, 171, 811–840. [Google Scholar] [CrossRef]
- Sivasamy, A.; Singh, K.P.; Mohan, D.; Maruthamuthu, M. Studies on defluoridation of water by coal-based sorbents. J. Chem. Technol. Biotechnol. 2001, 76, 717–722. [Google Scholar] [CrossRef]
- Islam, M.; Patel, R. Thermal activation of basic oxygen furnace slag and evaluation of its fluoride removal efficiency. Chem. Eng. J. 2011, 169, 68–77. [Google Scholar] [CrossRef]
- Song, G.; Wu, Y.; Chen, X.; Hou, W.; Wang, Q. Adsorption performance of heavy metal ions between EAF steel slag and common mineral adsorbents. Desalination Water Treat. 2014, 52, 7125–7132. [Google Scholar] [CrossRef]
- Kim, D.; Shin, M.; Choi, H.; Seo, C.; Baek, K. Removal mechanisms of copper using steel-making slag: Adsorption and precipitation. Desalination 2008, 223, 283–289. [Google Scholar] [CrossRef]
- Zahar, M.S.M.; Kusin, F.M.; Muhammad, S.N. Adsorption of Manganese in Aqueous Solution by Steel Slag. Procedia Environ. Sci. 2015, 30, 145–150. [Google Scholar] [CrossRef]
- Wang, S.; Yao, S.; Du, K.; Yuan, R.; Chen, H.; Wang, F.; Zhou, B. The mechanisms of conventional pollutants adsorption by modified granular steel slag. Environ. Eng. Res. 2021, 26, 190352. [Google Scholar] [CrossRef]
- Kostura, B.; Kulveitová, H.; Leško, J. Blast furnace slags as sorbents of phosphate from water solutions. Water Res. 2005, 39, 1795–1802. [Google Scholar] [CrossRef]
- Jain, A.K.; Gupta, V.K.; Bhatnagar, A.; Suhas. A Comparative Study of Adsorbents Prepared from Industrial Wastes for Removal of Dyes. Sep. Sci. Technol. 2003, 38, 463–481. [Google Scholar] [CrossRef]
- Yu, J.; Liang, W.; Wang, L.; Li, F.; Zou, Y.; Wang, H. Phosphate removal from domestic wastewater using thermally modified steel slag. J. Environ. Sci. 2015, 31, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yang, M.; Xu, P.; Zhao, X.; Bai, H.; Li, H. Characteristics of Nitrate Removal from Aqueous Solution by Modified Steel Slag. Water 2017, 9, 757. [Google Scholar] [CrossRef]
- Duan, J.; Fang, H.; Lin, J.; Lin, J.; Huang, Z. Simultaneous Removal of NH4+ and PO43− at Low Concentrations from Aqueous Solution by Modified Converter Slag. Water Environ. Res. 2013, 85, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Su, B. Removal characteristics of Cd(II) from acidic aqueous solution by modified steel-making slag. Chem. Eng. J. 2014, 246, 160–167. [Google Scholar] [CrossRef]
- Jeon, G.T. Characteristic of Fluoride Wastewater and Analysis on Its Treatment Efficiency in Non-Semiconductor Manufacturing Plant. Master’s Thesis, Hanyang University, Seoul, Republic of Korea, 2003. [Google Scholar]
- Byeon, H.J.; Kim, S.J.; Park, J.Y. Treatment of Fluoride Wastewater Using Calcium Based Materials. Proc. Korean Soc. Environ. Eng. 2005, 12, 1281–1286. [Google Scholar]
- An, B.M.; Jeong, J.Y.; Kim, J.H.; Park, J.Y. Treatment of Semiconductor Wastewater using Bipolar ZVI Packed Bed Electrolytic Cell. Proc. Korean Soc. Civ. Eng. Conf. 2012, 10, 2799–2802. [Google Scholar]
- Freundlich, H. Uber die adsorption in losungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Claveau-Mallet, D.; Wallace, S.; Comeau, Y. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Water Res. 2013, 47, 1512–1520. [Google Scholar] [CrossRef]
- Ruthven, D.M. Principles of Adsorption and Adsorption Processes; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Cooney, D.O.; Adesanya, B.A.; Hines, A.L. Effect of particle size distribution on adsorption kinetics in stirred batch systems. Chem. Eng. Sci. 1983, 38, 1535–1541. [Google Scholar] [CrossRef]
- Najm, I.N.; Snoeyink, V.L.; Suidan, M.T.; Lee, C.H.; Richard, Y. Effect of Particle Size and Background Natural Organics on the Adsorption Efficiency of PAC. J. Am. Water Work. Assoc. 1990, 82, 65–72. [Google Scholar] [CrossRef]
- Kwon, S.D. A Study on the Treatment of the Acid Mine Drainage Using the Steel Making Slag. Master’s Thesis, Hanyang University, Seoul, Republic of Korea, 1999. [Google Scholar]
- López Valdivieso, A.; Reyes Bahena, J.L.; Song, S.; Herrera Urbina, R. Temperature effect on the zeta potential and fluoride adsorption at the α-Al2O3/aqueous solution interface. J. Colloid Interface Sci. 2006, 298, 1–5. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.; Du, Q.; Peng, X.; Liu, T.; Wang, Z.; Xia, Y.; Zhang, W.; Wang, K.; Zhu, H.; et al. Adsorption of fluoride from aqueous solution by graphene. J. Colloid Interface Sci. 2011, 363, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Mondal, N.K.; Bhaumik, R.; Datta, J.K. Fluoride Adsorption by Calcium Carbonate, Activated Alumina and Activated Sugarcane Ash. Environ. Process 2016, 3, 195–216. [Google Scholar] [CrossRef]
- Kumari, U.; Biswas, S.; Meikap, B.C. Defluoridation characteristics of a novel adsorbent developed from ferroalloy electric arc furnace slag: Batch, column study and treatment of industrial wastewater. Environ. Technol. Innov. 2020, 18, 100782. [Google Scholar] [CrossRef]
- Ren, Y.; Tong, J.; Qu, G.; Ning, P.; Ren, N.; Zhang, C.; Wu, F.; Yang, Y.; Chen, X.; Wang, Z.; et al. Preparation of fluoride adsorbent by resource utilization of carbide slag from industrial waste. J. Environ. Chem. Eng. 2022, 10, 108632. [Google Scholar] [CrossRef]
- Oh, T.; Choi, B.; Shinogi, Y.; Chikushi, J. Effect of pH Conditions on Actual and Apparent Fluoride Adsorption by Biochar in Aqueous Phase. Water Air Soil Pollut. 2012, 223, 3729–3738. [Google Scholar] [CrossRef]
- Oh, T.; Chikushi, J. Fluoride adsorption on water treatment sludge processed by polyaluminium chloride. J. Food Agric. Environ. 2010, 8, 358–362. [Google Scholar]
- Lacson, C.F.Z.; Lu, M.; Huang, Y. Chemical precipitation at extreme fluoride concentration and potential recovery of CaF2 particles by fluidized-bed homogenous crystallization process. Chem. Eng. J. 2021, 415, 128917. [Google Scholar] [CrossRef]
- Singh, S.K.; Vashistha, P.; Chandra, R.; Rai, A.K. Study on leaching of electric arc furnace (EAF) slag for its sustainable applications as construction material. Process Saf. Environ. Prot. 2021, 148, 1315–1326. [Google Scholar] [CrossRef]
- Riley, A.L.; Mayes, W.M. Long-term evolution of highly alkaline steel slag drainage waters. Environ. Monit. Assess. 2015, 187, 463. [Google Scholar] [CrossRef] [PubMed]
- Kemer, B.; Ozdes, D.; Gundogdu, A.; Bulut, V.N.; Duran, C.; Soylak, M. Removal of fluoride ions from aqueous solution by waste mud. J. Hazard. Mater. 2009, 168, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.; Patel, R.K. Evaluation of removal efficiency of fluoride from aqueous solution using quick lime. J. Hazard. Mater. 2007, 143, 303–310. [Google Scholar] [CrossRef]
- Ahamad, K.U.; Singh, R.; Baruah, I.; Choudhury, H.; Sharma, M.R. Equilibrium and kinetics modeling of fluoride adsorption onto activated alumina, alum and brick powder. Groundw. Sustain. Dev. 2018, 7, 452–458. [Google Scholar] [CrossRef]
- Suer, P.; Lindqvist, J.; Arm, M.; Frogner-Kockum, P. Reproducing ten years of road ageing—Accelerated carbonation and leaching of EAF steel slag. Sci. Total Environ. 2009, 407, 5110–5118. [Google Scholar] [CrossRef]
- Roadcap, G.S.; Kelly, W.R.; Bethke, C.M. Geochemistry of extremely alkaline (pH > 12) ground water in slag-fill aquifers. Ground Water 2005, 43, 806–816. [Google Scholar] [CrossRef]
- Smith, E.; Naidu, R.; Alston, A.M. Arsenic in the soil environment: A review. Adv. Agron. 1998, 64, 149–195. [Google Scholar]
(Unit: %) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | CaO | SiO2 | MgO | Al2O3 | Fe | MnO | P2O5 | SO3 | Cr2O3 | TiO2 | F2O3 | |
EAF OS | Avg. | 16.8 | 18.8 | 10.0 | 14.1 | 18.2 | 9.6 | 0.1 | 0.0 | 4.0 | 1.5 | 23.4 |
Max. | 20.0 | 20.6 | 12.8 | 18.5 | 27.0 | 15.8 | 0.2 | 0.0 | 5.2 | 1.8 | 34.7 | |
Min. | 13.9 | 15.6 | 8.1 | 11.4 | 11.6 | 7.2 | 0.0 | 0.0 | 2.5 | 1.1 | 14.9 | |
EAFRS | Avg. | 31.9 | 29.1 | 17.4 | 9.9 | 2.5 | 4.2 | 0.0 | 0.0 | 0.4 | 0.8 | 3.2 |
Max. | 42.4 | 35.8 | 24.0 | 15.8 | 25.8 | 25.5 | 0.1 | 0.1 | 4.6 | 1.5 | 33.2 | |
Min. | 16.0 | 16.1 | 7.4 | 6.3 | 0.5 | 0.7 | 0.0 | 0.0 | 0.0 | 0.4 | 0.7 |
(Unit: mg/L) | ||||
---|---|---|---|---|
Item | Jeon (2003) [17] | An (2010) [2] | Byeon (2005) [18] | An (2012) [19] |
pH | 3.37 | 2.8 | 2.3 | 2.3 |
F− | 214.94 | 330.2 | 375~442 | 327 |
PO43-P | - | 322.7 | 1000~1350 | 432 |
NH4+-N | - | 137.8 | - | 176 |
NO3− | - | - | 310~400 | 62 |
SO42− | - | - | 350~400 | 1200 |
CODCr | 56.5 | - | - | 561 |
Initial pH | EOS-B | EOS-C1 | EOSC-2 | ERS-B | ERS-C1 | ERS-C2 |
---|---|---|---|---|---|---|
pH 2 | 7.22 | 7.12 | 6.83 | 7.86 | 7.76 | 7.36 |
pH 2.5 * | 8.28 | 7.74 | 7.45 | 8.57 | 7.97 | 7.65 |
pH 5.0 | 11.1 | 11.15 | 10.52 | 11.62 | 11.52 | 10.87 |
pH 7.0 | 11.27 | 11.19 | 10.77 | 11.68 | 11.62 | 11.16 |
pH 9.0 | 11.26 | 11.15 | 10.37 | 11.71 | 11.6 | 10.96 |
pH 11.0 | 11.41 | 11.34 | 10.96 | 11.76 | 11.66 | 11.11 |
Sample | Freundlich | Langmuir | ||||
---|---|---|---|---|---|---|
a | b | |||||
EOS-B | 1.205 | 0.148 | 0.946 | 52.083 | 0.002 | 0.097 |
EOS-C1 | 1.133 | 0.278 | 0.929 | 39.216 | 0.006 | 0.504 |
EOS-C2 | 1.309 | 0.464 | 0.962 | 25.126 | 0.013 | 0.913 |
ERS-B | 1.191 | 0.186 | 0.983 | 41.667 | 0.028 | 0.364 |
ERS-C1 | 1.364 | 0.59 | 0.864 | 23.753 | 0.016 | 0.801 |
ERS-C2 | 1.212 | 0.599 | 0.856 | 34.843 | 0.013 | 0.486 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, G.-e.; Jang, S.-h.; Song, Y.-c. Removal of HF via CaCl2-Modified EAF Slag: A Waste-Derived Sorbent Approach. Water 2025, 17, 1919. https://doi.org/10.3390/w17131919
Kim G-e, Jang S-h, Song Y-c. Removal of HF via CaCl2-Modified EAF Slag: A Waste-Derived Sorbent Approach. Water. 2025; 17(13):1919. https://doi.org/10.3390/w17131919
Chicago/Turabian StyleKim, Go-eun, Seong-ho Jang, and Young-chae Song. 2025. "Removal of HF via CaCl2-Modified EAF Slag: A Waste-Derived Sorbent Approach" Water 17, no. 13: 1919. https://doi.org/10.3390/w17131919
APA StyleKim, G.-e., Jang, S.-h., & Song, Y.-c. (2025). Removal of HF via CaCl2-Modified EAF Slag: A Waste-Derived Sorbent Approach. Water, 17(13), 1919. https://doi.org/10.3390/w17131919