A Discrete Fracture Network Model for Coupled Variable-Density Flow and Dissolution with Dynamic Fracture Aperture Evolution
Abstract
1. Introduction
2. The Mathematical Model
3. The Numerical Model
3.1. Spatial Discretization of the Flow
3.2. Discretization of Transport and Dissolution
3.3. Temporal Discretization
4. Numerical Experiments
4.1. The Henry Saltwater Intrusion Problem with Dissolution
4.2. Fracture Evolution Due to Dissolution in an Injection/Extraction System
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jafari Raad, S.M.; Hassanzadeh, H. Onset of Density-Driven Instabilities in Fractured Aquifers. Phys. Rev. E 2018, 97, 043109. [Google Scholar] [CrossRef]
- Kim, M.; Kim, K.; Han, W.S.; Oh, J.; Park, E. Density-Driven Convection in a Fractured Porous Media: Implications for Geological CO2 Storage. Water Resour. Res. 2019, 55, 5852–5870. [Google Scholar] [CrossRef]
- Wang, G.; Ma, X.; Song, X.; Li, G. Modeling Flow and Heat Transfer of Fractured Reservoir: Implications for a Multi-Fracture Enhanced Geothermal System. J. Clean. Prod. 2022, 365, 132708. [Google Scholar] [CrossRef]
- Gao, X.; Li, T.; Zhang, Y.; Kong, X.; Meng, N. A Review of Simulation Models of Heat Extraction for a Geothermal Reservoir in an Enhanced Geothermal System. Energies 2022, 15, 7148. [Google Scholar] [CrossRef]
- Grillo, A.; Logashenko, D.; Stichel, S.; Wittum, G. Simulation of Density-Driven Flow in Fractured Porous Media. Adv. Water Resour. 2010, 33, 1494–1507. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater Intrusion Processes, Investigation and Management: Recent Advances and Future Challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Sebben, M.L.; Werner, A.D.; Graf, T. Seawater Intrusion in Fractured Coastal Aquifers: A Preliminary Numerical Investigation Using a Fractured Henry Problem. Adv. Water Resour. 2015, 85, 93–108. [Google Scholar] [CrossRef]
- Hosseini, N.; Bajalan, Z.; Khoei, A.R. Numerical Modeling of Density-Driven Solute Transport in Fractured Porous Media with the Extended Finite Element Method. Adv. Water Resour. 2020, 136, 103453. [Google Scholar] [CrossRef]
- Etsias, G.; Hamill, G.A.; Campbell, D.; Straney, R.; Benner, E.M.; Águila, J.F.; McDonnell, M.C.; Ahmed, A.A.; Flynn, R. Laboratory and Numerical Investigation of Saline Intrusion in Fractured Coastal Aquifers. Adv. Water Resour. 2021, 149, 103866. [Google Scholar] [CrossRef]
- Kim, J.; Sonnenthal, E.; Rutqvist, J. A Sequential Implicit Algorithm of Chemo-Thermo-Poro-Mechanics for Fractured Geothermal Reservoirs. Comput. Geosci. 2015, 76, 59–71. [Google Scholar] [CrossRef]
- Medekenova, A.; Jones, G.D. Characterization and Modeling Challenges Associated with Fracture and Karst (Non-Matrix) in the Margin Area of a Carbonate Reservoir. In Proceedings of the SPE Annual Caspian Technical Conference and Exhibition, Astana, Kazakhstan, 12–14 November 2014; SPE: Astana, Kazakhstan, 2014; p. SPE-172275-MS. [Google Scholar]
- Tran, M.; Jha, B. Effect of Poroelastic Coupling and Fracture Dynamics on Solute Transport and Geomechanical Stability. Water Resour. Res. 2021, 57, e2021WR029584. [Google Scholar] [CrossRef]
- Natarajan, N.; Suresh Kumar, G. Solute Transport in a Coupled Fracture-Matrix System with Sinusoidal Fracture Geometry. Int. J. Eng. Sci. Technol. 2010, 2, 1886–1992. [Google Scholar]
- Zechner, E.; Konz, M.; Younes, A.; Huggenberger, P. Effects of Tectonic Structures, Salt Solution Mining, and Density-Driven Groundwater Hydraulics on Evaporite Dissolution (Switzerland). Hydrogeol. J. 2011, 19, 1323–1334. [Google Scholar] [CrossRef]
- Tenthorey, E.; Fitzgerald, J. Feedbacks between Deformation, Hydrothermal Reaction and Permeability Evolution in the Crust: Experimental Insights. Earth Planet. Sci. Lett. 2006, 247, 117–129. [Google Scholar] [CrossRef]
- Deng, H.; Spycher, N. Modeling Reactive Transport Processes in Fractures. Rev. Mineral. Geochem. 2019, 85, 49–74. [Google Scholar] [CrossRef]
- Ameli, P.; Elkhoury, J.E.; Morris, J.P.; Detwiler, R.L. Fracture Permeability Alteration Due to Chemical and Mechanical Processes: A Coupled High-Resolution Model. Rock. Mech. Rock. Eng. 2014, 47, 1563–1573. [Google Scholar] [CrossRef]
- Aliouache, M.; Wang, X.; Jourde, H.; Huang, Z.; Yao, J. Incipient Karst Formation in Carbonate Rocks: Influence of Fracture Network Topology. J. Hydrol. 2019, 575, 824–837. [Google Scholar] [CrossRef]
- Lopes, J.A.G.; Medeiros, W.E.; La Bruna, V.; De Lima, A.; Bezerra, F.H.R.; Schiozer, D.J. Advancements towards DFKN Modelling: Incorporating Fracture Enlargement Resulting from Karstic Dissolution in Discrete Fracture Networks. J. Pet. Sci. Eng. 2022, 209, 109944. [Google Scholar] [CrossRef]
- Berre, I.; Doster, F.; Keilegavlen, E. Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches. Transp. Porous Med. 2019, 130, 215–236. [Google Scholar] [CrossRef]
- Liu, R.; Li, B.; Jiang, Y.; Huang, N. Review: Mathematical Expressions for Estimating Equivalent Permeability of Rock Fracture Networks. Hydrogeol. J. 2016, 24, 1623–1649. [Google Scholar] [CrossRef]
- Kordilla, J.; Sauter, M.; Reimann, T.; Geyer, T. Simulation of Saturated and Unsaturated Flow in Karst Systems at Catchment Scale Using a Double Continuum Approach. Hydrol. Earth Syst. Sci. 2012, 16, 3909–3923. [Google Scholar] [CrossRef]
- Flemisch, B.; Berre, I.; Boon, W.; Fumagalli, A.; Schwenck, N.; Scotti, A.; Stefansson, I.; Tatomir, A. Benchmarks for Single-Phase Flow in Fractured Porous Media. Adv. Water Resour. 2018, 111, 239–258. [Google Scholar] [CrossRef]
- Hoteit, H.; Firoozabadi, A. Modeling of Multicomponent Diffusions and Natural Convection in Unfractured and Fractured Media by Discontinuous Galerkin and Mixed Methods. Numer. Methods Eng. 2018, 114, 535–556. [Google Scholar] [CrossRef]
- Shakiba, M.; Cavalcante Filho, J.S.D.A.; Sepehrnoori, K. Using Embedded Discrete Fracture Model (EDFM) in Numerical Simulation of Complex Hydraulic Fracture Networks Calibrated by Microseismic Monitoring Data. J. Nat. Gas. Sci. Eng. 2018, 55, 495–507. [Google Scholar] [CrossRef]
- Ţene, M.; Bosma, S.B.M.; Al Kobaisi, M.S.; Hajibeygi, H. Projection-Based Embedded Discrete Fracture Model (pEDFM). Adv. Water Resour. 2017, 105, 205–216. [Google Scholar] [CrossRef]
- Adler, P.M.; Thovert, J.-F. Fractures and Fracture Networks; Theory and Applications of Transport in Porous Media; Springer: Dordrecht, The Netherlands, 1999; Volume 15, ISBN 978-90-481-5192-9. [Google Scholar]
- Aldrich, G.; Hyman, J.D.; Karra, S.; Gable, C.W.; Makedonska, N.; Viswanathan, H.; Woodring, J.; Hamann, B. Analysis and Visualization of Discrete Fracture Networks Using a Flow Topology Graph. IEEE Trans. Visual. Comput. Graph. 2017, 23, 1896–1909. [Google Scholar] [CrossRef]
- Tabrizinejadas, S.; Younes, A.; Hoteit, H.; Carrayrou, J.; Fahs, M. Coupled Fluid Flow, Solute Transport and Dissolution Processes in Discrete Fracture Networks: An Advanced Discontinuous Galerkin Model. Adv. Water Resour. 2023, 180, 104540. [Google Scholar] [CrossRef]
- Eymard, R.; Gallouët, T.; Herbin, R. Finite Volume Methods. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 2000; Volume 7, pp. 713–1018. ISBN 978-0-444-50350-3. [Google Scholar]
- Brown, P.N.; Hindmarsh, A.C.; Petzold, L.R. Using Krylov Methods in the Solution of Large-Scale Differential-Algebraic Systems. SIAM J. Sci. Comput. 1994, 15, 1467–1488. [Google Scholar] [CrossRef]
- Younes, A.; Fahs, M.; Ahmed, S. Solving Density Driven Flow Problems with Efficient Spatial Discretizations and Higher-Order Time Integration Methods. Adv. Water Resour. 2009, 32, 340–352. [Google Scholar] [CrossRef]
- Younes, A.; Koohbor, B.; Belfort, B.; Ackerer, P.; Doummar, J.; Fahs, M. Modeling Variable-Density Flow in Saturated-Unsaturated Porous Media: An Advanced Numerical Model. Adv. Water Resour. 2022, 159, 104077. [Google Scholar] [CrossRef]
- Younes, A.; Hoteit, H.; Helmig, R.; Fahs, M. A Robust Fully Mixed Finite Element Model for Flow and Transport in Unsaturated Fractured Porous Media. Adv. Water Resour. 2022, 166, 104259. [Google Scholar] [CrossRef]
- Li, Q.; Wu, J.; Li, Q.; Wang, F.; Cheng, Y. Sediment Instability Caused by Gas Production from Hydrate-Bearing Sediment in Northern South China Sea by Horizontal Wellbore: Sensitivity Analysis. Nat. Resour. Res. 2025, 34, 1667–1699. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Wang, S.; Guo, Y.; Han, X.; Li, Q.; Cheng, Y.; Dong, Z.; Li, X.; Zhang, X. Numerical Insights into Factors Affecting Collapse Behavior of Horizontal Wellbore in Clayey Silt Hydrate-Bearing Sediments and the Accompanying Control Strategy. Ocean. Eng. 2024, 297, 117029. [Google Scholar] [CrossRef]
- Witherspoon, P.A.; Wang, J.S.Y.; Iwai, K.; Gale, J.E. Validity of Cubic Law for Fluid Flow in a Deformable Rock Fracture. Water Resour. Res. 1980, 16, 1016–1024. [Google Scholar] [CrossRef]
- Detwiler, R.L.; Rajaram, H. Predicting Dissolution Patterns in Variable Aperture Fractures: Evaluation of an Enhanced Depth-averaged Computational Model. Water Resour. Res. 2007, 43, 2006WR005147. [Google Scholar] [CrossRef]
- Hanna, R.B.; Rajaram, H. Influence of Aperture Variability on Dissolutional Growth of Fissures in Karst Formations. Water Resour. Res. 1998, 34, 2843–2853. [Google Scholar] [CrossRef]
- Suto, Y.; Tanifuji, K.; Watanabe, K.; Hashida, T.; Shoji, T.; Takahashi, H. Dependence of the Rate of Granite Dissolution on Temperature and Fluid Velocity under Simulated Geothermal Reservoir Environments. J. Geotherm. Res. Soc. Jpn. 2002, 24, 47–56. [Google Scholar]
- Tocci, M.D.; Kelley, C.T.; Miller, C.T. Accurate and Economical Solution of the Pressure-Head Form of Richards’ Equation by the Method of Lines. Adv. Water Resour. 1997, 20, 1–14. [Google Scholar] [CrossRef]
- Kavetski, D.; Binning, P.; Sloan, S.W. Adaptive Backward Euler Time Stepping with Truncation Error Control for Numerical Modelling of Unsaturated Fluid Flow. Numer. Methods Eng. 2002, 53, 1301–1322. [Google Scholar] [CrossRef]
- Farthing, M.W.; Kees, C.E.; Miller, C.T. Mixed Finite Element Methods and Higher Order Temporal Approximations for Variably Saturated Groundwater Flow. Adv. Water Resour. 2003, 26, 373–394. [Google Scholar] [CrossRef]
- Younes, A.; Fahs, M. A Semi-Analytical Solution for the Reactive Henry Saltwater Intrusion Problem. Water Air Soil. Pollut. 2013, 224, 1779. [Google Scholar] [CrossRef]
- Henry, H.R. Interfaces between Salt Water and Fresh Water in Coastal Aquifers. In Sea Water in Coastal Aquifers; Supply Paper 1613-C; US Geological Survey Water: Reston, VA, USA, 1964; p. C35-70. [Google Scholar]
- Ségol, G. Classic Groundwater Simulations: Proving and Improving Numerical Models; PTR Prentice Hall: Englewood Cliffs, NJ, USA, 1994; ISBN 978-0-13-137993-0. [Google Scholar]
- Younes, A.; Fahs, M. A Semi-Analytical Solution for Saltwater Intrusion with a Very Narrow Transition Zone. Hydrogeol. J. 2014, 22, 501–506. [Google Scholar] [CrossRef]
Permeability | m2 |
Porosity | |
Dispersivities | m |
Molecular diffusion | m2/s |
Dissolution rate | m/s |
Dimensioless concentration at saturation | |
Flow boundary conditions |
|
Transport boundary conditions |
|
Aperture of Fractures | mm |
Porosity | |
Pumping/injection rate | m2/s |
Dispersivity | m |
Molecular diffusion | m2/s |
Dissolution rate | m/s |
Dimensionless concentration at saturation | |
Density of rock | kg/m3 |
Stoichiometric coefficient |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, A.; Baalousha, H.M.; Guellouz, L.; Fahs, M. A Discrete Fracture Network Model for Coupled Variable-Density Flow and Dissolution with Dynamic Fracture Aperture Evolution. Water 2025, 17, 1904. https://doi.org/10.3390/w17131904
Younes A, Baalousha HM, Guellouz L, Fahs M. A Discrete Fracture Network Model for Coupled Variable-Density Flow and Dissolution with Dynamic Fracture Aperture Evolution. Water. 2025; 17(13):1904. https://doi.org/10.3390/w17131904
Chicago/Turabian StyleYounes, Anis, Husam Musa Baalousha, Lamia Guellouz, and Marwan Fahs. 2025. "A Discrete Fracture Network Model for Coupled Variable-Density Flow and Dissolution with Dynamic Fracture Aperture Evolution" Water 17, no. 13: 1904. https://doi.org/10.3390/w17131904
APA StyleYounes, A., Baalousha, H. M., Guellouz, L., & Fahs, M. (2025). A Discrete Fracture Network Model for Coupled Variable-Density Flow and Dissolution with Dynamic Fracture Aperture Evolution. Water, 17(13), 1904. https://doi.org/10.3390/w17131904