Scale Effects in Landslide Susceptibility Assessment: Integrating Slope Unit Division and SHAP-Based Interpretability in a Typical River Basin
Abstract
1. Introduction
2. Overview of the Study Area
3. Research Data
3.1. Historical Landslide Inventory
3.2. Influencing Factors
4. Research Methods
4.1. Data Preprocessing of Influencing Factors
4.2. Slope Unit Division
4.3. XGBoost Ensemble Learning Model
4.4. Landslide Susceptibility Assessment and Validation
4.5. SHAP Model Interpretability
4.6. Research Objectives
5. Results
5.1. Results of Slope Unit Division
5.2. Influencing Factors Selection
5.3. Landslide Susceptibility Evaluation Results for Different Slope Unit Sizes
5.3.1. Accuracy Validation for Different Slope Unit Sizes
5.3.2. Zoning Results for Different Slope Unit Sizes
6. Discussion
6.1. Importance Analysis of Influencing Factors Across Different Slope Unit Scales
6.2. Model Interpretability Across Different Slope Unit Scales
6.3. Influencing Factor Hazardous Thresholds and Synergistic Effects
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Bammou, Y.; Benzougagh, B.; Ouallali, A.; Kader, S.; Raougua, M.; Igmoullan, B. Improving landslide susceptibility mapping in semi-arid regions using machine learning and geospatial techniques. DYSONA—Appl. Sci. 2025, 6, 269–290. [Google Scholar]
- Sidle, R.C.; Bogaard, T.A. Dynamic earth system and ecological controls of rainfall-initiated landslides. Earth-Sci. Rev. 2016, 159, 275–291. [Google Scholar] [CrossRef]
- Iida, T. A stochastic hydro-geomorphological model for shallow landsliding due to rainstorm. CATENA 1999, 34, 293–313. [Google Scholar] [CrossRef]
- Luo, W.; Liu, C.C. Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods. Landslides 2018, 15, 465–474. [Google Scholar] [CrossRef]
- Deng, H.; Wu, X.T.; Zhang, W.J.; Liu, Y.S.; Li, W.L.; Li, X.Y.; Zhou, P.; Zhuo, W.Z. Slope-Unit Scale Landslide Susceptibility Mapping Based on the Random Forest Model in Deep Valley Areas. Remote Sens. 2022, 14, 4245. [Google Scholar] [CrossRef]
- Chen, T.Q.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Sahin, E.K. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Appl. Sci. 2020, 2, 1308. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ma, X.L.; Zhang, J.L.; Sun, D.L.; Zhou, X.Z.; Mi, C.L.; Wen, H.J. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model. J. Environ. Manag. 2023, 332, 117357. [Google Scholar] [CrossRef]
- Huang, F.M.; Cao, Y.; Li, W.B.; Catani, F.; Song, G.Q.; Huang, J.S.; Yu, C.S. Uncertainties of landslide susceptibility prediction: Influences of different study area scales and mapping unit scales. Int. J. Coal Sci. Technol. 2024, 11, 26. [Google Scholar] [CrossRef]
- Crozier, M.J. Landslide geomorphology: An argument for recognition, with examples from New Zealand. Geomorphology 2010, 120, 3–15. [Google Scholar] [CrossRef]
- Gong, Y.F.; Yao, A.J.; Li, Y.L.; Li, Y.Y.; Tian, T. Classification and distribution of large-scale high-position landslides in southeastern edge of the Qinghai-Tibet Plateau, China. Environ. Earth Sci. 2022, 81, 311. [Google Scholar] [CrossRef]
- Korup, O. Geomorphic implications of fault zone weakening: Slope instability along the Alpine Fault, South Westland to Fiordland. N. Z. J. Geol. Geophys. 2004, 47, 257–267. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X.W.; Shyu, J.B.H. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology 2015, 248, 77–92. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.S.; Li, W.L.; Su, L.J.; Lu, J.Y.; Zeng, L.; Li, X. Insights into the geohazards triggered by the 2017 Ms 6.9 Nyingchi earthquake in the east Himalayan syntaxis, China. CATENA 2021, 205, 105467. [Google Scholar] [CrossRef]
- Xu, X.W.; Wen, X.Z.; Zheng, R.Z.; Ma, W.T.; Song, F.M.; Yu, G.H. Pattern of latest tectonic motion and its dynamics for active blocks in Sichuan-Yunnan region, China. Sci. China Ser. D Earth Sci. 2003, 46, 210–226. [Google Scholar] [CrossRef]
- Guzzetti, F.; Galli, M.; Reichenbach, P.; Ardizzone, F.; Cardinali, M. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat. Hazards Earth Syst. Sci. 2006, 6, 115–131. [Google Scholar] [CrossRef]
- Yang, J.H.; Wu, G.L.; Jiao, J.Y.; Dyck, M.; He, H.L. Freeze-thaw induced landslides on grasslands in cold regions. CATENA 2022, 219, 106650. [Google Scholar] [CrossRef]
- Tsou, C.Y.; Chigira, M.; Matsushi, Y.; Hiraishi, N.; Arai, N. Coupling fluvial processes and landslide distribution toward geomorphological hazard assessment: A case study in a transient landscape in Japan. Landslides 2017, 14, 1901–1914. [Google Scholar] [CrossRef]
- Zou, Y.; Qi, S.W.; Guo, S.F.; Zheng, B.W.; Zhan, Z.F.; He, N.W.; Huang, X.L.; Hou, X.K.; Liu, H.Y. Factors controlling the spatial distribution of coseismic landslides triggered by the Mw 6.1 Ludian earthquake in China. Eng. Geol. 2022, 296, 106477. [Google Scholar] [CrossRef]
- Guo, F.F.; Yang, N.; Meng, H.; Zhang, Y.Q.; Ye, B.Y. Application of the Relief Amplitude and Slope Analysis to Regional Landslide Hazard Assessments. Geol. China 2008, 35, 131–143. [Google Scholar]
- Guo, C.B.; Montgomery, D.R.; Zhang, Y.S.; Wang, K.; Yang, Z.H. Quantitative assessment of landslide susceptibility along the Xianshuihe fault zone, Tibetan Plateau, China. Geomorphology 2015, 248, 93–110. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wang, L.Q.; Liu, S.L.; Liu, P.F.; Zhu, Z.W.; Zhang, W.G. A comparative study of regional landslide susceptibility mapping with multiple machine learning models. Geol. J. 2024, 59, 2383–2400. [Google Scholar] [CrossRef]
- Ma, J.W.; Wang, Y.K.; Niu, X.X.; Jiang, S.; Liu, Z.Y. A comparative study of mutual information-based input variable selection strategies for the displacement prediction of seepage-driven landslides using optimized support vector regression. Stoch. Environ. Res. Risk Assess. 2022, 36, 3109–3129. [Google Scholar] [CrossRef]
- Sun, H.Q.; Li, W.Y.; Scaioni, M.; Fu, J.; Guo, X.; Gao, J. Influence of spatial heterogeneity on landslide susceptibility in the transboundary area of the Himalayas. Geomorphology 2023, 433, 108723. [Google Scholar] [CrossRef]
- Alvioli, M.; Marchesini, I.; Reichenbach, P.; Rossi, M.; Ardizzone, F.; Fiorucci, F.; Guzzetti, F. Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling. Geosci. Model. Dev. 2016, 9, 3975–3991. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A.L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data. Anal. 2022, 38, 367–378. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; Volume 26, p. 13. [Google Scholar]
- Brenning, A. Spatial prediction models for landslide hazards: Review, comparison and evaluation. Nat. Hazards Earth Syst. Sci. 2005, 5, 853–862. [Google Scholar] [CrossRef]
- Nath, R.R.; Pal, S.; Sharma, M.L. Use of Probabilistically Generated Scenario Earthquakes in Landslide Hazard Zonation: A Semi-Qualitative Approach; Springer: Singapore, 2022; pp. 247–274. [Google Scholar]
- Tsangaratos, P.; Ilia, I.; Hong, H.Y.; Chen, W.; Xu, C. Applying Information Theory and GIS-based quantitative methods to produce landslide susceptibility maps in Nancheng County, China. Landslides 2017, 14, 1091–1111. [Google Scholar] [CrossRef]
- Li, J.L.; Zhou, K.P.; Liu, W.J.; Zhang, Y.M. Analysis of the effect of freeze–thaw cycles on the degradation of mechanical parameters and slope stability. Bull. Eng. Geol. Environ. 2018, 77, 573–580. [Google Scholar] [CrossRef]
- Li, T.Z.; Zhang, L.M.; Gong, W.P.; Tang, H.M.; Jiang, R.C. Initiation mechanism of landslides in cold regions: Role of freeze-thaw cycles. Int. J. Rock Mech. Min. Sci. 2024, 183, 105906. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Ni, W.K.; Niu, F.J.; Li, L.; Ren, S.Y. Spatiotemporal Distribution Characteristics and Influencing Factors of Freeze-Thaw Erosion in the Qinghai-Tibet Plateau. Remote Sens. 2024, 16, 1629. [Google Scholar] [CrossRef]
- Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.P. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology 2018, 301, 10–20. [Google Scholar] [CrossRef]
- Lu, Z.Y.; Liu, G.Y.; Song, Z.H.; Sun, K.; Li, M.; Chen, Y.S.; Zhao, X.D.; Zhang, W. Advancements in Technologies and Methodologies of Machine Learning in Landslide Susceptibility Research: Current Trends and Future Directions. Appl. Sci. 2024, 14, 9639. [Google Scholar] [CrossRef]
- Belair, G.; Bendick, R. Development of Regional Landslide Susceptibility Models: A First Step Towards Model Transferability. Geol. Soc. Am. 2022, 54, 5. [Google Scholar]
- Li, J.; Fan, C.P.; Zhao, K.; Zhang, Z.; Duan, P. Landslide displacement prediction using time series InSAR with combined LSTM and TCN: Application to the Xiao Andong landslide, Yunnan Province, China. Nat. Hazards 2025, 121, 3857–3884. [Google Scholar] [CrossRef]
Causative Factor | Symbol | Data Source | Data Type | Resolution/Scale |
---|---|---|---|---|
Elevation | EL | DEM (2016) | Continuous | 30 m |
Slope | SL | DEM (2016) | Continuous | 30 m |
Aspect | AS | DEM (2016) | Discrete | 30 m |
Curvature | CU | DEM (2016) | Continuous | 30 m |
Relative Height | RH | DEM (2016) | Continuous | 30 m |
Lithology | LI | Geological Map (1995–2002) | Discrete | 1:200,000 |
Fault Density | FD | Geological Map (1995–2002) | Continuous | 1:200,000 |
Distance to Faults | DF | Geological Map (1995–2002) | Discrete | 1:200,000 |
PGA | PGA | China Earthquake Administration | Continuous | 1:4000 |
Bank slope | BS | Geological Map (1995–2002) | Discrete | 1:200,000 |
Terrain Wetness Index | TWI | DEM (2016) | Continuous | 30 m |
Distance to Rivers | DR | National Qinghai-Tibet Plateau Science Data | Discrete | 30 m |
River Density | RD | Continuous | 30 m | |
Rainfall | RF | Continuous | 30 m | |
Freezing Index | FI | Continuous | 30 m |
Sampling Method | Dataset | Slope Unit Size Parameter (c) | |||||
---|---|---|---|---|---|---|---|
0.05 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | ||
Centroid-Based | Total Samples | 20,891 | 13,450 | 9618 | 6366 | 4144 | 2867 |
Landslide Units | 1077 | 906 | 832 | 756 | 625 | 519 | |
Non-Landslide Units | 19,814 | 12,544 | 8786 | 5610 | 3519 | 2348 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, W.; Yang, Z.; Yang, J.; Li, Q.; Deng, J.; Zhao, S.; Cui, Y. Scale Effects in Landslide Susceptibility Assessment: Integrating Slope Unit Division and SHAP-Based Interpretability in a Typical River Basin. Water 2025, 17, 1877. https://doi.org/10.3390/w17131877
Hu W, Yang Z, Yang J, Li Q, Deng J, Zhao S, Cui Y. Scale Effects in Landslide Susceptibility Assessment: Integrating Slope Unit Division and SHAP-Based Interpretability in a Typical River Basin. Water. 2025; 17(13):1877. https://doi.org/10.3390/w17131877
Chicago/Turabian StyleHu, Wanyu, Zhongkang Yang, Jingxi Yang, Qingchun Li, Jianhui Deng, Siyuan Zhao, and Yulong Cui. 2025. "Scale Effects in Landslide Susceptibility Assessment: Integrating Slope Unit Division and SHAP-Based Interpretability in a Typical River Basin" Water 17, no. 13: 1877. https://doi.org/10.3390/w17131877
APA StyleHu, W., Yang, Z., Yang, J., Li, Q., Deng, J., Zhao, S., & Cui, Y. (2025). Scale Effects in Landslide Susceptibility Assessment: Integrating Slope Unit Division and SHAP-Based Interpretability in a Typical River Basin. Water, 17(13), 1877. https://doi.org/10.3390/w17131877