A Coupled Model of System Dynamics and Environmental Models for the Development Process Deduction of the Yangtze River Basin: Model Construction Method
Abstract
1. Introduction
2. Research Area
2.1. The Overview of the Yangtze River Basin and Its Administrative Regions
2.2. Main Problems and Challenges in the Yangtze River Basin
3. Methods
3.1. Overview of Methods
3.2. Systematic Generalization of the Yangtze River Basin and the Structure of the Model
3.2.1. The Causal Loop Based on Provinces: Population–Economy–Resource Subsystem
3.2.2. The Causal Loop Coupling Provinces and the River Basin: Population–Economy–Pollutant Subsystem
3.2.3. The Causal Loop Coupling Provinces and the River Basin: Water Security–Ecology Loop
3.3. Model Structure
3.3.1. Population Subsystem
3.3.2. Economy Subsystem
3.3.3. Resources Subsystem (Grain, Forest, and Energy)
3.3.4. Pollutant Subsystem
3.3.5. Disaster Subsystem
3.3.6. Water Environment Subsystem
3.3.7. Water Security–Ecology Subsystem
3.4. Data Sources
4. Results and Discussion
4.1. Model Validation and Sensitivity Analysis
4.2. Simulated Results and Discussion of the Provinces
4.3. Simulated Results and Discussion of the River Basin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SDMY | Systemic Deduction Model of the Development of Yangtze River Basin |
Appendix A
Appendix A.1. Population Subsystem
Appendix A.2. Economy Subsystem
Province | Elasticity Coefficients of the Labor Force | Elasticity Coefficients of the Capital Stock | |
---|---|---|---|
Shanghai | 0.134 | 0.866 | 0.996 |
Jiangsu | 0.227 | 0.773 | 0.998 |
Zhejiang | 0.247 | 0.753 | 0.997 |
Anhui | 0.302 | 0.698 | 0.998 |
Jiangxi | 0.289 | 0.711 | 0.991 |
Hubei | 0.245 | 0.755 | 0.998 |
Hunan | 0.304 | 0.696 | 0.996 |
Sichuan | 0.225 | 0.775 | 0.993 |
Guizhou | 0.27 | 0.73 | 0.994 |
Yunnan | 0.426 | 0.574 | 0.998 |
Chongqing | 0.181 | 0.819 | 0.989 |
Appendix A.3. Resources Subsystem (Grain)
Appendix A.4. Pollutant Subsystem
Appendix A.5. Disaster Subsystem
References
- Hoang, A.T.; Nižetić, S.; Olcer, A.I.; Ong, H.C.; Chen, W.H.; Chong, C.T.; Thomas, S.; Bandh, S.A.; Nguyen, X.P. Impacts of COVID-19 pandemic on the global energy system and the shift progress to renewable energy: Opportunities, challenges, and policy implications. Energy Policy 2021, 154, 112322. [Google Scholar] [CrossRef]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Wetterstrand, H.; DeClerck, F.; Shah, M.; Steduto, P.; et al. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef]
- Haque, F.; Ntim, C.G. Environmental policy, sustainable development, governance mechanisms and environmental performance. Bus. Strategy Environment. 2018, 27, 415–435. [Google Scholar] [CrossRef]
- Xu, Z.; Chau, S.N.; Chen, X.; Zhang, J.; Li, Y.; Dietz, T.; Wang, J.; Winkler, J.A.; Fan, F.; Huang, B.; et al. Author Correction: Assessing progress towards sustainable development over space and time. Nature 2020, 592, E28. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Costanza, R.; Daly, L.; Fioramonti, L.; Giovannini, E.; Kubiszewski, I.; Mortensen, L.F.; Pickett, K.E.; Ragnarsdottir, K.V.; De Vogli, R.; Wilkinson, R. Modelling and measuring sustainable wellbeing in connection with the UN Sustainable Development Goals. Ecol. Econ. 2016, 130, 350–355. [Google Scholar] [CrossRef]
- Cheng, G.; Li, X.; Zhao, W.; Xu, Z.; Feng, Q.; Xiao, S.; Xiao, H. Integrated study of the water–ecosystem–economy in the Heihe River Basin. Natl. Sci. Rev. 2014, 1, 413–428. [Google Scholar] [CrossRef]
- Hope, R.A. Evaluating social impacts of watershed development in India. World Dev. 2007, 35, 1436–1449. [Google Scholar] [CrossRef]
- Wagner, W.; Gawel, J.; Furumai, H.; De Souza, M.P.; Teixeira, D.; Rios, L.; Ohgaki, S.; Zehnder, A.J.B.; Hemond, H.F. Sustainable watershed management: An international multi-watershed case study. Ambio 2002, 31, 2–13. [Google Scholar] [CrossRef]
- Meadows, D.H.; Meadows, D.L.; Randers, J.; Behrens, W. Limits to Growth; Universe Books: New York, NY, USA, 1972. [Google Scholar]
- Meadows, D.H.; Randers, J.; Meadows, D.L. Limits to Growth: The 30-Year Update; Chelsea Green Publishing: White River Junction, VT, USA, 2004. [Google Scholar]
- Davies, E.G.; Simonovic, S.P. ANEMI: A new model for integrated assessment of global change. Interdiscip. Environ. Rev. 2010, 11, 127–161. [Google Scholar] [CrossRef]
- Akhtar, M.K.; Wibe, J.; Simonovic, S.P.; MacGee, J. Integrated assessment model of society-biosphere-climate-economy-energy system. Environ. Model. Softw. 2013, 49, 1–21. [Google Scholar] [CrossRef]
- Breach, P.A.; Simonovic, S.P. ANEMI3: An updated tool for global change analysis. PLoS ONE 2021, 16, e0251489. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Simonovic, S.P.; Yu, Z. ANEMI_Yangtze v1.0: A coupled human–natural systems model for the Yangtze Economic Belt–model description. Geosci. Model Dev. 2022, 15, 4503–4528. [Google Scholar] [CrossRef]
- Qu, W.; Shi, W.; Zhang, J.; Liu, T. T21 China 2050: A tool for national sustainable development planning. Geogr. Sustain. 2020, 1, 33–46. [Google Scholar] [CrossRef]
- Pedercini, M.; Arquitt, S.; Collste, D.; Herren, H. Harvesting synergy from sustainable development goal interactions. Proc. Natl. Acad. Sci. USA 2019, 116, 23021–23028. [Google Scholar] [CrossRef] [PubMed]
- Dixson-Declève, S.; Gaffney, O.; Ghosh, J.; Randers, J.; Rockstrom, J.; Stoknes, P.E. Earth for All: A Survival Guide for Humanity; New Society Publishers: Gabriola Island, BC, Canada, 2022. [Google Scholar]
- Zhang, X.; Xu, L.; Li, C. Sustainability of water resources in Shandong province based on a system dynamics model of water-economy-society for the lower yellow river. Sustainability 2022, 14, 3412. [Google Scholar] [CrossRef]
- Wang, A.; Wang, S.; Liang, S.; Yang, R.; Yang, M.; Yang, J. Research on Ecological Protection and High-Quality Development of the Lower Yellow River Based on System Dynamics. Water 2023, 15, 3046. [Google Scholar] [CrossRef]
- Cheng, G.; Li, G.; Pu, X.; Chen, C.; He, Y. Advancing coupling coordination simulation in the social-human-ecological system of the Three Gorges Reservoir Area: A multi-scenario system dynamics approach. Ecol. Indic. 2024, 158, 111504. [Google Scholar] [CrossRef]
- Madani, K.; Mariño, M.A. System dynamics analysis for managing Iran’s Zayandeh-Rud river basin. Water Resour. Manag. 2009, 23, 2163–2187. [Google Scholar] [CrossRef]
- Abdi-Dehkordi, M.; Bozorg-Haddad, O.; Salavitabar, A.; Goharian, E. Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches. Environ. Dev. Sustain. 2021, 23, 16246–16282. [Google Scholar] [CrossRef]
- Sharifi, A.; Kalin, L.; Tajrishy, M. System dynamics approach for hydropower generation assessment in developing watersheds: Case study of Karkheh River basin, Iran. J. Hydrol. Eng. 2013, 18, 1007–1017. [Google Scholar] [CrossRef]
- Wang, Z.; Fu, X. Scheme simulation and predictive analysis of water environment carrying capacity in Shanxi Province based on system dynamics and DPSIR model. Ecol. Indic. 2023, 154, 110862. [Google Scholar] [CrossRef]
- Ma, H.; Wang, Q.; Zhang, Y.; Hussain, M.B.; Xu, Y.; Tian, S.; Yuan, X.; Ma, Q.; Yuan, R.; Jia, Y. Research on sustainable development evaluation and improvement path of resource-based cities based on coupling of emergy and system dynamics. Environ. Dev. Sustain. 2024, 26, 5959–6006. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, M.; Xiang, Y.; Chang, C. An approach to stimulate the sustainability of an eco-industrial park using coupled emergy and system dynamics. Environ. Dev. Sustain. 2023, 25, 11531–11556. [Google Scholar] [CrossRef]
- Francis, A.; Thomas, A. System dynamics modelling coupled with multi-criteria decision-making (MCDM) for sustainability-related policy analysis and decision-making in the built environment. Smart Sustain. Built Environ. 2023, 12, 534–564. [Google Scholar] [CrossRef]
- Jiang, L.; Wu, Y.; He, X.; Fu, Q.; Wang, Z.; Jiang, Q. Dynamic simulation and coupling coordination evaluation of water footprint sustainability system in Heilongjiang province, China: A combined system dynamics and coupled coordination degree model. J. Clean. Prod. 2022, 380, 135044. [Google Scholar] [CrossRef]
- Beaussier, T.; Caurla, S.; Bellon-Maurel, V.; Loiseau, E. Coupling economic models and environmental assessment methods to support regional policies: A critical review. J. Clean. Prod. 2019, 216, 408–421. [Google Scholar] [CrossRef]
- Güneralp, B.; Reilly, M.K.; Seto, K.C. Capturing multiscalar feedbacks in urban land change: A coupled system dynamics spatial logistic approach. Environ. Plan. B Plan. Des. 2012, 39, 858–879. [Google Scholar] [CrossRef]
- Han, J.; Hayashi, Y.; Cao, X.; Imura, H. Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanghai, China. Landsc. Urban Plan. 2009, 91, 133–141. [Google Scholar] [CrossRef]
- Malard, J.J.; Inam, A.; Hassanzadeh, E.; Adamowski, J.; Tuy, H.A.; Melgar-Quiñonez, H. Development of a software tool for rapid, reproducible, and stakeholder-friendly dynamic coupling of system dynamics and physically-based models. Environ. Model. Softw. 2017, 96, 410–420. [Google Scholar] [CrossRef]
- Chen, Z.; Wei, S. Application of system dynamics to water security research. Water Resour. Manag. 2014, 28, 287–300. [Google Scholar] [CrossRef]
- Harms, J.Z.; Malard-Adam, J.J.; Adamowski, J.F.; Sharma, A.; Nkwasa, A. Dynamically coupling system dynamics and SWAT+ models using Tinamït: Application of modular tools for coupled human-water system models. Hydrol. Earth Syst. Sci. 2023, 27, 1683–1693. [Google Scholar] [CrossRef]
- Abdolabadi, H.; Amaya, M.; Little, J.C. Intimate coupling of a hydrologic model with an economic input–output model using system dynamics. Appl. Water Sci. 2023, 13, 75. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Wang, W. Study on the spatiotemporal variation characteristics of total phosphorus in the Yangtze River Basin from 2018 to 2022. Express Water Resour. Hydropower 2023, 44, 91–97+105. (In Chinese) [Google Scholar]
- Li, H.; Yang, Q.; Zhao, Y. Focusing on water eco-environment problems and sustainably promoting ecological conservation and restoration of the Yangtze River. J. Environ. Eng. Technol. 2022, 12, 336–347. (In Chinese) [Google Scholar]
- Liu, L.; Huang, G.; Wang, F.; Chu, Z.; Li, H. Main Problems, Situation and Countermeasures of Water Eco-Environment Security in the Yangtze River Basin. Res. Environ. Sci. 2020, 33, 1081–1090. (In Chinese) [Google Scholar]
- Jumani, S.; Deitch, M.J.; Valle, D.; Machado, S.; Lecours, V.; Kaplan, D.; Krishnaswamy, J.; Howard, J. A new index to quantify longitudinal river fragmentation: Conservation and management implications. Ecol. Indic. 2022, 136, 108680. [Google Scholar] [CrossRef]
- Lyu, J.; Wang, X.; Liu, W.; Wang, Y.; Wei, C.; Wu, J. Longitudinal connectivity and fish habitat of main tributaries in Songhuajiang River Basin. Water Resour. Prot. 2017, 33, 155–160. (In Chinese) [Google Scholar]
- Song, J.; Yu, J.; Li, G. Prediction of Population Development Process. Sci. China 1980, 9, 920–932. (In Chinese) [Google Scholar]
- Lu, Y.; Cai, F. The impact of demographic changes on potential growth rates: A comparison between China and Japan. J. World Econ. 2014, 37, 3–29. (In Chinese) [Google Scholar]
- Shan, H. Re-estimation of China’s capital stock K. J. Quant. Technol. Econ. 2008, 25, 17–31. (In Chinese) [Google Scholar]
- Zhu, M.; Zhang, Z.; Zhu, B.; Kong, R.; Zhang, F.; Tian, J.; Jiang, T. Population and economic projections in the Yangtze River Basin based on shared socioeconomic pathways. Sustainability 2020, 12, 4202. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook 2024; China Statistics Press: Beijing, China, 2024.
- Lu, Y.; Cai, F. From Demographic Dividend to Reform Dividend: Based on China’s Potential Growth Rate Simulation. World Econ. 2016, 39, 3–23. (In Chinese) [Google Scholar] [CrossRef]
- Dong, W.; Zhang, Y.; Zhang, L.; Ma, W.; Luo, L. What will the water quality of the Yangtze River be in the future? Sci. Total Environ. 2023, 857, 159714. [Google Scholar] [CrossRef]
- Liu, D.; Bai, L.; Li, X.; Zhang, Y.; Qiao, Q.; Lu, Z.; Liu, J. Spatial characteristics and driving forces of anthropogenic phosphorus emissions in the Yangtze River Economic Belt, China. Resour. Conserv. Recycl. 2022, 176, 105937. [Google Scholar] [CrossRef]
- Li, J.; Chen, Y.; Cai, K.; Fu, J.; Ting, T.; Chen, Y.; Folberth, C.; Liu, Y. A high-resolution nutrient emission inventory for hotspot identification in the Yangtze River Basin. J. Environ. Manag. 2022, 321, 115847. [Google Scholar] [CrossRef]
- Yang, L.; Liu, H.; Wang, H.; Zhang, R.; Zhao, Z. Construction and application of system dynamic model for ‘four water’ and socio-economic in the Yangtze River Economic BeltⅠ: Model construction and verification. Yangtze River 2022, 53, 1–7. (In Chinese) [Google Scholar]
- Yang, L.; Zhang, R.; Liu, H.; Wang, H.; Zhao, Z. Construction and application of system dynamic model for ‘four water’ and socio-economic in the Yangtze River Economic BeltⅡ: Scenario analysis of development model in 2035. Yangtze River 2022, 53, 1–7+25. (In Chinese) [Google Scholar]
- Chen, X.; Guo, J. Prediction of China’s Grain Production Development and Analysis of Its Guarantee Level. J. Nat. Resour. 1996, 3, 197–202. (In Chinese) [Google Scholar]
Classification | Name | Source |
---|---|---|
Population | permanent population, etc. | Statistical yearbooks of provinces along the Yangtze River |
age structure, fertility rate, mortality rate, years of education, etc. | National Census Data | |
Economy | real GDP, transfer payment ratio, etc. | Statistical yearbooks of provinces along the Yangtze River |
capital stock | Perpetual Storage Method [44] | |
Grain | grain yield, farmland area, etc. | China Rural Statistical Yearbook |
Energy | energy consumption, etc. | China Energy Statistical Yearbook |
energy consumption structure | Statistical Yearbook of provinces along the Yangtze River | |
Forest | forest area, etc. | National Forest Resources Census Data |
Disaster | soil erosion area, etc. | China Water Conservancy Statistical Yearbook |
areas affected by flood and drought disasters, etc. | China Rural Statistical Yearbook | |
Pollutant and water environment | pollutant emissions, etc. | Pollution declaration data of provinces along the Yangtze River |
sewage discharge | China Environmental Statistical Yearbook | |
Water security–ecology | parameters of water conservancy projects | The first National Water Resources Census and other datasets |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Yu, T.; Jia, N.; Yang, P.; Xia, Q. A Coupled Model of System Dynamics and Environmental Models for the Development Process Deduction of the Yangtze River Basin: Model Construction Method. Water 2025, 17, 1874. https://doi.org/10.3390/w17131874
Li C, Yu T, Jia N, Yang P, Xia Q. A Coupled Model of System Dynamics and Environmental Models for the Development Process Deduction of the Yangtze River Basin: Model Construction Method. Water. 2025; 17(13):1874. https://doi.org/10.3390/w17131874
Chicago/Turabian StyleLi, Chong, Tao Yu, Ning Jia, Pei Yang, and Qing Xia. 2025. "A Coupled Model of System Dynamics and Environmental Models for the Development Process Deduction of the Yangtze River Basin: Model Construction Method" Water 17, no. 13: 1874. https://doi.org/10.3390/w17131874
APA StyleLi, C., Yu, T., Jia, N., Yang, P., & Xia, Q. (2025). A Coupled Model of System Dynamics and Environmental Models for the Development Process Deduction of the Yangtze River Basin: Model Construction Method. Water, 17(13), 1874. https://doi.org/10.3390/w17131874