Assessment of Water Ecological Health in the Lower Reaches of the Jinsha River Based on the Integrity Index of Periphytic Algae
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Overview and Sampling Point Arrangement
2.2. Determination of Physicochemical Parameters of Water Bodies
2.3. Collection and Identification of Benthic Algae
2.4. Data Processing and Analysis
2.4.1. Calculation of Dominant Species and Diversity Indices
2.4.2. Community Dissimilarity Analysis
2.5. Constructing P-IBI Index System
2.5.1. Build Candidate Parameter List
2.5.2. Filter Core Parameters
2.5.3. Construction of Biotic Integrity Index of Periphytic Algae
3. Results
3.1. Changes in Water Physical and Chemical Factors
3.2. Characteristics of Algal Community Structure
3.2.1. Species Composition
3.2.2. Dominant Species
3.2.3. Alpha Diversity
3.3. Based on the Analysis of Community Structure Differences Between Bray–Crutis
3.4. Biotic Integrity Index of Periphytic Algae
3.4.1. Alpha Diversity Analysis
3.4.2. Core Parameters
3.4.3. Redundancy Analysis
3.4.4. Construction of Biotic Integrity Index of Periphytic Algae
3.4.5. Proposed Benchmark
3.5. Relationship Between Periphytic Algae Community Parameters and Water Environment Factors
4. Discussion
4.1. Characteristics of Community Structure of Periphytic Algae in the Jinsha River
4.2. Biotic Integrity Index of Periphytic Algae in Jinsha River
4.3. Response Relationship Between Algae Community Structure and Water Environmental Factors in Jinsha River
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, F.; Liu, F.; Xia, Z.; Lin, P.; Xu, C.; Wang, J.; Hou, M.; Zou, X. Classification and assessment methods for mountain channel habitats in the Chishui River basin, China. Water 2022, 14, 515. [Google Scholar] [CrossRef]
- Ding, R.; Yu, K.; Fan, Z.; Liu, J. Study and application of urban aquatic ecosystem health evaluation index system in river network plain area. Int. J. Environ. Res. Public Health 2022, 19, 16545. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Li, M.; Zhou, R.; Zhang, S.; Bai, X.; Cui, Y. Application of subtraction set pair potential method in river ecological health evaluation and diagno. Water Resour. Prot. 2022, 38, 198–204. (In Chinese) [Google Scholar]
- Chen, D.; Hu, M.; Guo, Y.; Dahlgren, R.A. Changes in river water temperature between 1980 and 2012 in yongan watershed, eastern China: Magnitude, drivers and models. J. Hydrol. 2016, 533, 191–199. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, M.; Xu, J.; Xu, J.; Yang, J.; Li, Y.; Zhu, L.; Tang, C. Zooplankton succession characteristics and water quality evaluation of typical lakes in the hinterland of Lixia River. He Hai Da Xue Xue Bao 2022, 50, 49. [Google Scholar]
- SL/T 793-2020; Technical Guidelines for River and Lake Health Assessment. Food and Agriculture Organization: Rome, Italy, 2020.
- HJ 1295-2023; Technical Guidelines for Water Ecological Monitoring—Aquatic Organism Monitoring and Evaluation of Rivers (on Trial). Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2023.
- Karr, J.R. Assessment of biotic integrity using fish communities. Fisheries 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Kerans, C.; Lucia, F.J.; Senger, R.K. Integrated Characterization of Carbonate Ramp Reservoirs Using Permian San Andres Formation Outcrop Analogs. AAPG Bull. 1994, 78, 181–216. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, Y.; Peng, Y.; Shi, B.; Liu, T.; Dong, H.; Wang, Y.; Ren, Y.; Xi, Y. Assessing the ecological health of the Qingyi River basin using multi-community indices of biotic integrity. Ecol. Indic. 2023, 156, 111160. [Google Scholar] [CrossRef]
- Cui, Z.; Fan, W.; Chen, C.; Mo, K.; Chen, Q.; Zhang, Q.; He, R. Ecosystem health evaluation of urban rivers based on multitrophic aquatic organisms. J. Environ. Manag. 2024, 349, 119476. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Meng, X.; Zhang, C.; Chen, Z. Improved method for benthic ecosystem health assessment by integrating chemical indexes into multiple biological indicator species—A case study of the baiyangdian lake, China. J. Environ. Manag. 2023, 335, 117530. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, F.; Wu, D.; Huang, X.; Chen, J.; Zhou, L.; Kong, F. Health Assessment of Haihe River Basin Based on Benthic Index of Biotic Integrity. Ecol. Environ. 2023, 32, 1785. [Google Scholar] [CrossRef]
- Pan, Z.; He, J.; Liu, D.; Wang, J.; Guo, X. Ecosystem health assessment based on ecological integrity and ecosystem services demand in the middle reaches of the Yangtze River economic belt, China. Sci. Total Environ. 2021, 774, 144837. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Qv, X.D.; Wang, S.M.; Zhu, Y.; Liu, H.B.; Zhang, H.P.; Zhang, M.; Sun, S.J. River health assessment of Hun River Basin based on benthic index of biological integrity. Resour. Environ. Yangtze Basin 2020, 29, 1374–1386. [Google Scholar]
- Ru, H.J.; Zhang, Y.; Wu, X.X. Macrozoobenthos community structure and its relationship with envi-ronmental factors in the riparian zone of the lower Jinsha River. J. Fish. Sci. China 2022, 29, 1679–1692. [Google Scholar] [CrossRef]
- Hao, X.C.; Zhang, Q.; Su, W. Ecosystem Health Assessment of Lower Jinsha River Based on the Phytoplanktonic Index of Biotic Integrity(P-IBI). J. Hydroecology 2025, 46, 11–19. [Google Scholar] [CrossRef]
- Liu, B.; Niu, Y.; Wang, K.; Dai, D. Characteristic analysis and control measures for debris flow in baitan gully of WDD hydropower station. Chin. J. Geotech. Eng. 2016, 38, 225–230. [Google Scholar] [CrossRef]
- Hu, H.J.; Wei, Y.X. Chinese Freshwater Algae-System, Classification and Ecology; Science Press: Beijing, China, 2006. [Google Scholar]
- Hu, H.J.; Li, Y.Y.; Wei, Y.X.; Zhu, H.Z.; Chen, J.Y.; Shi, Z.X. The Freshwater Algae of China; Shanghai Science and Technology Press: Shanghai, China, 1980; pp. 1–225. [Google Scholar]
- Mei, H.; Zhao, X.F.; Guo, B.; Liu, G.X.; Hu, Z.Y. Advances in freshwater algal biodiversity in China. Ecol. Sci. 2003, 22, 356–359. [Google Scholar] [CrossRef]
- Di, F.; Han, D.; Wang, G.; Zhao, W.; Zhou, D.; Rong, N.; Yang, S. Characteristics of bacterial community structure in the sediment of Chishui River (China) and the response to environmental factors. J. Contam. Hydrol. 2024, 263, 104335. [Google Scholar] [CrossRef]
- Liu, F.; Liu, H. Effectiveness and challenges of aquatic ecological restoration of Chishui River in upper Yangtze River. Bull. Chin. Acad. Sci. (Chin. Vers.) 2023, 38, 1883–1893. [Google Scholar] [CrossRef]
- Ma, B.S.; Wei, K.J.; Xu, J.; Lu, J.; Xu, B.; Zhu, X. Diversity and spatial distribution of periphytic algae in the lower reaches of the Yalong River and its main tributary, the Anning River. J. Fish. Sci. China 2021, 28, 1602–1611. [Google Scholar] [CrossRef]
- GB/T 43476-2023; National Technical Committee for Standardization of Environmental Management (SAC/TC 207). Technical Guidelines for Water Ecological Health Assessment. Standards Press of China: Beijing, China, 2023.
- Hu, J.; Song, Z.; Zhou, J.; Tan, L.; Tang, T. Comparative study on planktonic and periphytic algal community patterns and their relationships with environmental variables in the upper reaches of the Jinsha River. Acta Ecol. Sin. 2022, 42, 590–599. [Google Scholar] [CrossRef]
- Zhang, P.L.; Sun, C.J. The influence of algae growing on pH and DO in surface water. Environ. Monit. China 2004, 20, 49–50. [Google Scholar] [CrossRef]
- Hu, J.C.; Guo, S.H.; Tang, T. Using benthic diatom-based multi-metric indices to assess ecological conditions of the Chishui River. Environ. Monit. China 2020, 36, 94–104. [Google Scholar] [CrossRef]
- Yan, B.; Cui, G.; Sun, S.; Wang, P.; Wang, C.; Wu, C.; Chen, J. Distribution characteristics and influencing factors of abundant and rare planktonic microeukaryotes in Jinsha River. Huanjing Kexue 2023, 44, 3864–3871. [Google Scholar] [CrossRef]
- Xie, C.L.; Wang, T.; Hu, J.J.; Yan, C.L.; Pei, G.F. Autumn benthic diatom community structure and water quality assessment in the Chishui river basin. J. Hydroecol. 2022, 43, 43–50. [Google Scholar] [CrossRef]
- Feng, T.Y.; Song, C.; Chen, J.Z. Environmental indication function of aquatic algae. Agric. Sci. Technol. 2011, 27, 257–265. [Google Scholar] [CrossRef]
- Dunck, B.; Felisberto, S.A.; de Souza Nogueira, I. Effects of freshwater eutrophication on species and functional beta diversity of periphytic algae. Hydrobiologia 2019, 837, 195–204. [Google Scholar] [CrossRef]
Taxonomic Group | Candidate Parameter | Parameter Code | Response to Disturbance |
---|---|---|---|
Species Richness | Total number of taxonomic units | M1 | Decrease |
Number of taxonomic units in Bacillariophyta, Chlorophyta, and Cyanophyta | M2 | Decrease | |
Number of taxonomic units in Bacillariophyta | M3 | Decrease | |
Number of taxonomic units in Chlorophyta | M4 | Increase | |
Number of taxonomic units in Cyanophyta | M5 | Increase | |
Community Composition | Bacillariophyta cell density (%) | M6 | Decrease |
Chlorophyta cell density (%) | M7 | Increase | |
Cyanophyta cell density (%) | M8 | Increase | |
Dominant species cell density (%) | M9 | Increase | |
Bacillariophyta taxonomic unit proportion (%) | M10 | Decrease | |
Chlorophyta taxonomic unit proportion (%) | M11 | Decrease | |
Cyanophyta taxonomic unit proportion (%) | M12 | Decrease | |
Species Diversity | Shannon–Wiener index | M13 | Decrease |
Pielou evenness index | M14 | Decrease | |
Margalef richness index | M15 | Decrease | |
Standing Stock | Cell density | M16 | Decrease |
Bacillariophyta density | M17 | Decrease | |
Chlorophyta density | M18 | Decrease | |
Cyanophyta density | M19 | Decrease | |
Dominant species cell density | M20 | Decrease | |
Biomass | M21 | Decrease | |
Bacillariophyta biomass | M22 | Decrease | |
Chlorophyta biomass | M23 | Increase | |
Cyanophyta biomass | M24 | Increase |
Dry Season | Flat Water Period | ||||
---|---|---|---|---|---|
Phylum | Dominant Species | Dominance Value | Phylum | Dominant Species | Dominance Value |
Bacillariophyta | Achnanthes | 0.117 | Bacillariophyta | Melosira granulata | 0.051 |
Bacillariophyta | Gomphonema | 0.027 | Cyanophyta | Oscillatoria | 0.034 |
Cyanophyta | Lyngbya | 0.661 | Cyanophyta | Lyngbya | 0.041 |
Cyanophyta | Leptolyngbya | 0.027 |
Period | I | IE | I0 | Benchmark Value |
---|---|---|---|---|
2023 Dry season | M13 | 2.19 | 0.1 | 6.04 |
M22 | 74.79 | 1.31 | ||
M10 | 0.92 | 0.64 | ||
2024 Flat water period | M6 | 0.9 | 0.19 | 6.62 |
M16 | 965.95 | 51.4 | ||
M20 | 185.12 | 10.37 |
Site | Nov—2023 | May—2024 |
---|---|---|
J1 | Excellent | Good |
J2 | Good | Very Poor |
J3 | Moderate | Poor |
J4 | Moderate | Poor |
J5 | Moderate | Moderate |
J6 | Moderate | Excellent |
J7 | Good | Poor |
J8 | Poor | Moderate |
J9 | Excellent | Poor |
J10 | Excellent | Good |
J11 | Good | Moderate |
J12 | Good | Moderate |
J13 | Good | Poor |
J14 | Moderate | Poor |
J15 | Excellent | Poor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Chen, X.; Yan, L.; Shi, L.; Liang, L.; Xu, L.; Hu, Y.; Luan, J. Assessment of Water Ecological Health in the Lower Reaches of the Jinsha River Based on the Integrity Index of Periphytic Algae. Water 2025, 17, 1769. https://doi.org/10.3390/w17121769
Xu Z, Chen X, Yan L, Shi L, Liang L, Xu L, Hu Y, Luan J. Assessment of Water Ecological Health in the Lower Reaches of the Jinsha River Based on the Integrity Index of Periphytic Algae. Water. 2025; 17(12):1769. https://doi.org/10.3390/w17121769
Chicago/Turabian StyleXu, Zhi, Xiao Chen, Long Yan, Long Shi, Lili Liang, Liwen Xu, Yanhang Hu, and Jun Luan. 2025. "Assessment of Water Ecological Health in the Lower Reaches of the Jinsha River Based on the Integrity Index of Periphytic Algae" Water 17, no. 12: 1769. https://doi.org/10.3390/w17121769
APA StyleXu, Z., Chen, X., Yan, L., Shi, L., Liang, L., Xu, L., Hu, Y., & Luan, J. (2025). Assessment of Water Ecological Health in the Lower Reaches of the Jinsha River Based on the Integrity Index of Periphytic Algae. Water, 17(12), 1769. https://doi.org/10.3390/w17121769