The Impact of the Water Tariff on the Economic Feasibility of Rainwater Harvesting for Use in Residential Buildings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Rainfall Data
2.3. Simulation Scenarios
2.4. Representative Buildings
- is the number of categories;
- is the number of buildings in the group.
- is the number of categories;
- is the number of buildings in the subgroup.
2.5. Rainwater HarvestingRainwater-harvesting Systems’ Simulation
2.6. Technical Viability Assessment
- is the catchment area per cubic metre of rainwater (m2/m3);
- is the roof area of the representative building simulated (m2);
- is the number of residents in the scenario simulated;
- is the total daily per capita water consumption in the scenario simulated (litres);
- is the potential for potable-water savings (%).
2.7. Economic Feasibility Assessment
- is the net present value (R$);
- is the total period of the investment (years);
- is the year of the cashflow (years);
- is the cash flow for the tth period (R$);
- is the rate of return (%).
3. Results
3.1. Representative Buildings
3.2. Potential for Potable-water Savings
3.3. Economic Feasibility
3.4. Tariff-format Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Environment Programme. Freshwater. In Global Environment Outlook, 6th ed.; United Nations Environment Programme: Cambridge, UK, 2019; pp. 236–269. [Google Scholar]
- Rygaard, M.; Binning, P.J.; Albrechtsen, H.J. Increasing urban water self-sufficiency: New era, new challenges. J. Environ. Manag. 2011, 92, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Abdulla, F.A.; AL-Shareef, A.W. Roof rainwater harvesting systems for household water supply in Jordan. Desalination 2009, 243, 195–207. [Google Scholar] [CrossRef]
- Marinoski, A.K.; Ghisi, E. Environmental performance of hybrid rainwater-greywater systems in residential buildings. Resour. Conserv. Recycl. 2019, 144, 100–114. [Google Scholar] [CrossRef]
- Palla, A.; Gnecco, I.; Lanza, L.G.; Labarbera, P. Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resour. Conserv. Recycl. 2012, 62, 71–80. [Google Scholar] [CrossRef]
- Pavolová, H.; Bakalár, T.; Kudelas, D.; Pułkárová, P. Environmental and economic assessment of rainwater application in households. J. Clean. Prod. 2019, 209, 1119–1125. [Google Scholar] [CrossRef]
- Souza, E.L.; Ghisi, E. Potable Water Savings by Using Rainwater for Non-Potable Uses in Houses. Water 2012, 4, 607–628. [Google Scholar] [CrossRef]
- Freitas, D.A.; Ghisi, E. Economic feasibility analysis of rainwater harvesting: A case study in Imbituba, Brazil. Urban Water J. 2020, 17, 905–911. [Google Scholar] [CrossRef]
- Vieira, A.S. Uso Racional de Água em Habitações de Interesse Social Como Estratégia Para a Conservação de Energia em Florianópolis, Santa Catarina. Masters’s Thesis, Federal University of Santa Catarina, Florianópolis, Brazil, 2012. [Google Scholar]
- Ghisi, E.; Rupp, R.F.; Triska, Y. Comparing indicators to rank strategies to save potable water in buildings. Resour. Conserv. Recycl. 2014, 87, 137–144. [Google Scholar] [CrossRef]
- Proença, L.C.; Ghisi, E.; Tavares, D.F.; Coelho, G.M. Potential for electricity savings by reducing potable water consumption in a city scale. Resour. Conserv. Recycl. 2011, 55, 960–965. [Google Scholar] [CrossRef]
- Gonçalves, R.F. Uso Racional da Água em Edificações; ABES: Rio de Janeiro, Brazil, 2006. [Google Scholar]
- Teston, A.; Teixeira, C.A.; Ghisi, E.; Cardoso, E.B. Impact of rainwater harvesting on the drainage system: Case study of a condominium of houses in Curitiba, Southern Brazil. Water 2018, 10, 1100. [Google Scholar] [CrossRef]
- Teston, A.; Geraldi, M.; Colasio, B.; Ghisi, E. Rainwater Harvesting in Buildings in Brazil: A literature review. Water 2018, 10, 471. [Google Scholar] [CrossRef]
- Ghisi, E.; Montibeller, A.; Schmidt, R.W. Potential for potable water savings by using rainwater: An analysis over 62 cities in southern Brazil. Build. Environ. 2006, 41, 204–210. [Google Scholar] [CrossRef]
- Ghisi, E.; Ferreira, D.F. Potential for potable water savings by using rainwater and greywater in a multi-storey residential building in southern Brazil. Build. Environ. 2007, 42, 2512–2522. [Google Scholar] [CrossRef]
- Ghisi, E.; Oliveira, S.M. Potential for potable water savings by combining the use of rainwater and greywater in houses in southern Brazil. Build. Environ. 2007, 42, 1731–1742. [Google Scholar] [CrossRef]
- Ghisi, E.; Thives, L.P.; Meincheim, D.L. Potential for potable water savings by using rainwater in a house in southern Brazil. In Proceedings of the Iwa Efficient 2017—9th Biennial Specialist Conference on Efficient Use and Management of Water, Bath, UK, 18–20 July 2017. [Google Scholar]
- Marinoski, D.L.; Ghisi, E.; Gómez, L.A. Aproveitamento de água pluvial e dimensionamento de reservatório para fins não potáveis: Estudo de caso em um conjunto residencial localizado em Florianópolis-SC. In Proceedings of the Conferência Latino-Americana de Construção Sustentável, 1, Encontro Nacional de Tecnologia do Ambiente Construído, 10, São Paulo, Brazil, 18–21 July 2004. [Google Scholar]
- Maykot, J.K.; Ghisi, E. Assessment of A Rainwater Harvesting System in A Multi-Storey Residential Building in Brazil. Water 2020, 12, 546. [Google Scholar] [CrossRef]
- Abas, P.G.E.; Mahlia, T.M.I. Techno-Economic and Sensitivity Analysis of Rainwater Harvesting System as Alternative Water Source. Sustainability 2019, 11, 2365. [Google Scholar] [CrossRef]
- Rahman, A.; Keane, J.; Imteaz, M.A. Rainwater harvesting in Greater Sydney: Water savings, reliability and economic benefits. Resour. Conserv. Recycl. 2012, 61, 16–21. [Google Scholar] [CrossRef]
- Ghisi, E.; Cordova, M.M. Netuno 4. Programa computacional. Universidade Federal de Santa Catarina, Departamento de Engenharia Civil. Available online: https://labeee.ufsc.br/downloads/softwares/netuno (accessed on 27 March 2024).
- Ghisi, E. (Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil); Cordova, M.M (Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brasil). Personal Communication. 2014. Available online: https://labeee.ufsc.br/sites/default/files/Manual-Netuno-4_Junho2014.pdf (accessed on 27 March 2024).
- Cordova, M.M.; Ghisi, E. Analysis of Potable Water Savings Using Behavioural Models. In Water Conservation, 1st ed.; Jha, M., Ed.; InTech Open: London, UK, 2011; Volume 1, pp. 89–104. Available online: https://www.intechopen.com/chapters/24681 (accessed on 27 March 2024).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Portal Cidades. Available online: https://cidades.ibge.gov.br/brasil/sc/florianopolis/panorama (accessed on 25 October 2021).
- Pandolfo, C.; Braga, H.J.; Silva, V.P., Jr.; Massignam, A.M.; Pereira, E.S.; Thomé, V.M.R.; Valci, F.V. Atlas climatológico do Estado de Santa Catarina. Florianópolis: Epagri. 2002. Available online: https://ciram.epagri.sc.gov.br/ciram_arquivos/atlasClimatologico/atlasClimatologico.pdf (accessed on 25 October 2021).
- INMET—Instituto Nacional de Metereologia. Banco de Dados Meteorológicos. Available online: https://bdmep.inmet.gov.br/# (accessed on 25 February 2021).
- Geraldi, M.S.; Ghisi, E. Influence of the length of rainfall time series on rainwater harvesting systems: A case study in Berlin. Resour. Conserv. Recycl. 2017, 125, 169–180. [Google Scholar] [CrossRef]
- Geraldi, M.S.; Ghisi, E. Assessment of the length of rainfall time series for rainwater harvesting in buildings. Resour. Conserv. Recycl. 2018, 133, 231–241. [Google Scholar] [CrossRef]
- Ghisi, E.; Cardoso, K.A.; Rupp, R.F. Short-term versus long-term rainfall time series in the assessment of potable water savings by using rainwater in houses. J. Environ. Manag. 2012, 100, 109–119. [Google Scholar] [CrossRef]
- SNIS—Sistema Nacional de Informações Sobre Saneamento. In Diagnóstico dos Serviços de Água e Esgotos, 25th ed.; SNS/MDR: Brasília, Brazil, 2020.
- Marinoski, A.K.; Vieira, A.S.; Silva, A.S.; Ghisi, E. Water End-Uses in Low-Income Houses in Southern Brazil. Water 2014, 6, 1985–1999. [Google Scholar] [CrossRef]
- Hammes, G.; Ghisi, E.; Thives, L.P. Water end-uses and rainwater harvesting: A case study in Brazil. Urban Water J. 2020, 17, 177–183. [Google Scholar] [CrossRef]
- Costa, F.M. Estatística, 1st ed.; Universidade do Estado do Pará: Belém-Pará, Brasil, 2011; p. 27. Available online: https://ccse.uepa.br/downloads/material_2010/LIVRO_ESTATISTICA.pdf (accessed on 27 March 2024).
- Basu, A.; Basu, S. A User’s Guide to Analytics, 1st ed.; Taylor & Francis: Boca Raton, FL, USA, 2016; p. 31. [Google Scholar]
- Real Statistics Using Excel. Available online: https://www.real-statistics.com/multivariate-statistics/cluster-analysis/jenks-natural-breaks/ (accessed on 26 November 2021).
- ABNT—Associação Brasileira de Normas Técnicas. NBR 15527: Água de Chuva—Aproveitamento de Coberturas em Áreas Urbanas Para Fins Não Potáveis—Requisitos, 2nd ed.; ABNT—Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2019; pp. 1–10. [Google Scholar]
- Plínio Tomáz Engenharia—Aproveitamento de Água de Chuva. Available online: https://www.pliniotomaz.com (accessed on 2 February 2021).
- Severis, R.M.; Silva, F.A.; Wahrlich, J.; Skoronski, E.; Simioni, F.J. Economic analysis and risk-based assessment of the financial losses of domestic rainwater harvesting systems. Resour. Conserv. Recycl. 2019, 146, 206–217. [Google Scholar] [CrossRef]
- CELESC—Centrais Elétricas de Santa Catarina. Tarifas e Taxas de Energia. Available online: https://www.celesc.com.br/tarifas-de-energia#tributos (accessed on 17 December 2021).
- CASAN—Companhia Catarinense de Água e Saneamento. Tarifas. Available online: https://www.casan.com.br/menu-conteudo/index/url/tarifas#0 (accessed on 17 December 2021).
- Casarotto Filho, N.; Kopittke, B.H. Análise de Investimentos, 10th ed.; Atlas: São Paulo, Brazil, 2007; p. 418. [Google Scholar]
- BCB—Banco Central do Brasil. Taxas de Juros Básicas: Histórico. Available online: https://www.bcb.gov.br/controleinflacao/historicotaxasjuros (accessed on 17 December 2021).
- BCB—Banco Central do Brasil. Histórico Das Metas Para a Inflação. Available online: https://www.bcb.gov.br/controleinflacao/historicometas (accessed on 17 December 2021).
- Ghisi, E. Potential for potable water savings by using rainwater in the residential sector of Brazil. Build. Environ. 2006, 41, 1544–1550. [Google Scholar] [CrossRef]
- Lopes, A.C.; Rupp, R.F.; Ghisi, E. Assessment of the potential for potable water savings by using rainwater in houses in southern Brazil. Water Sci. Technol. Water Supply 2016, 16, 533–541. [Google Scholar] [CrossRef]
- Istchuk, R.N.; Ghisi, E. Financial Feasibility Analysis of Residential Rainwater Harvesting in Maringá, Brazil. Sustainability 2022, 14, 12859. [Google Scholar] [CrossRef]
- Ghisi, E.; Schondermark, P.N. Investment Feasibility Analysis of Rainwater Use in Residences. Water Resour. Manag. 2013, 27, 2555–2576. [Google Scholar] [CrossRef]
- Berwanger, H.; Ghisi, E. Investment feasibility analysis of rainwater harvesting in the city of Itapiranga, Brazil. Int. J. Sustain. Hum. Dev. 2014, 2, 104–114. [Google Scholar]
Scenario | Inflation (% per Year) | MARR (% per Year) |
---|---|---|
Pessimistic | 12.53 | 25.00 |
Optimistic | 2.95 | 7.00 |
2001–2020 Average | 6.18 | 12.10 |
2019–2020 Average | 4.41 | 3.25 |
System Design | Rainwater Demand (%) | Technically Viable Cases (%) | Average Potential for Potable-Water Savings for Unviable Cases (%) |
---|---|---|---|
1 | 5 | 100.0 | - |
2 | 30 | 98.6 | 21.3 |
3 | 50 | 95.0 | 33.6 |
Number of Flats in the Building | System Design | Technically Viable Cases (%) | Average Potential for Potable-water Savings for Unviable Cases (%) |
---|---|---|---|
2 | 1 | 100.0 | - |
2 | 94.2 | 22.1 | |
3 | 83.3 | 34.3 | |
3–5 | 1 | 99.7 | 4.2 |
2 | 62.8 | 17.9 | |
3 | 42.0 | 26.7 | |
6–10 | 1 | 98.5 | 4.2 |
2 | 41.5 | 18.0 | |
3 | 17.8 | 26.0 | |
11–20 | 1 | 98.0 | 4.2 |
2 | 16.3 | 17.8 | |
3 | 3.3 | 23.1 | |
21–30 | 1 | 93.0 | 4.0 |
2 | 5.2 | 15.9 | |
3 | 0.0 | 19.1 | |
31–40 | 1 | 87.8 | 3.9 |
2 | 1.1 | 14.7 | |
3 | 0.0 | 16.6 | |
41–50 | 1 | 75.5 | 3.9 |
2 | 0.0 | 12.4 | |
3 | 0.0 | 13.1 | |
51–60 | 1 | 59.8 | 3.8 |
2 | 0.0 | 10.5 | |
3 | 0.0 | 10.7 | |
61–70 | 1 | 60.1 | 3.9 |
2 | 0.0 | 10.9 | |
3 | 0.0 | 10.8 | |
71–80 | 1 | 49.6 | 3.7 |
2 | 0.0 | 9.9 | |
3 | 0.0 | 9.5 | |
81–90 | 1 | 42.0 | 3.8 |
2 | 0.0 | 9.6 | |
3 | 0.0 | 8.9 | |
91–100 | 1 | 36.4 | 3.7 |
2 | 0.0 | 8.6 | |
3 | 0.0 | 7.3 | |
101–110 | 1 | 30.2 | 3.7 |
2 | 0.0 | 7.6 | |
3 | 0.0 | 6.0 | |
Total | 1 | 78.9 | 3.8 |
2 | 14.4 | 13.7 | |
3 | 7.1 | 16.7 |
Scenario | Economically Feasible Cases (%) | Average NPV (R$) | Average IRR (% per Year) | Average Payback (Years) |
---|---|---|---|---|
Pessimistic | 60.1 | 4413.81 | 38.22 | 8.6 |
Optimistic | 74.6 | 9045.79 | 23.89 | 7.2 |
2001–2020 Average | 74.3 | 7264.17 | 27.66 | 7.8 |
2019–2020 Average | 74.8 | 16,876.40 | 24.87 | 6.2 |
Number of Flats in the Building | Pessimistic Scenario | Optimistic Scenario | ||||||
---|---|---|---|---|---|---|---|---|
Economically Feasible Cases (%) | Average NPV (R$) | Average IRR (% per Year) | Average Payback (Years) | Economically Feasible Cases (%) | Average NPV (R$) | Average IRR (% per Year) | Average Payback (Years) | |
2 | 50.8 | 5602.96 | 44.00 | 6.4 | 75.0 | 8995.02 | 25.31 | 7.8 |
3–5 | 68.0 | 3551.30 | 45.02 | 7.2 | 75.0 | 7287.73 | 31.19 | 5.7 |
6–10 | 75.0 | 2972.33 | 52.56 | 5.0 | 75.0 | 6287.54 | 40.10 | 4.1 |
11–20 | 75.0 | 2354.00 | 58.90 | 4.1 | 75.0 | 4837.48 | 45.99 | 3.5 |
21–30 | 75.0 | 1687.50 | 58.53 | 4.2 | 75.0 | 3462.67 | 45.65 | 3.5 |
31–40 | 74.4 | 1208.76 | 54.20 | 4.5 | 74.9 | 2517.60 | 41.42 | 3.8 |
41–50 | 73.9 | 674.86 | 45.14 | 6.1 | 74.8 | 1509.25 | 32.92 | 4.8 |
51–60 | 64.7 | 375.04 | 37.41 | 8.9 | 72.6 | 871.57 | 24.46 | 6.9 |
61–70 | 39.6 | 260.58 | 33.63 | 10.9 | 66.9 | 510.24 | 17.91 | 9.6 |
71–80 | 6.5 | 385.57 | 39.09 | 8.3 | 23.2 | 366.05 | 14.97 | 12.6 |
81–90 | 4.3 | 302.81 | 38.26 | 7.1 | 5.0 | 709.53 | 24.76 | 6.5 |
91–100 | 2.9 | 93.35 | 29.96 | 12.2 | 3.7 | 336.81 | 17.76 | 8.7 |
101–110 | 0.0 | - | - | - | 1.2 | 81.19 | 10.49 | 14.7 |
Total | 57.8 | 1883.49 | 51.34 | 5.6 | 62.2 | 3758.06 | 37.00 | 5.0 |
Number of Flats in the Building | 2001–2020 Average Scenario | 2019–2020 Average Scenario | ||||||
---|---|---|---|---|---|---|---|---|
Economically Feasible Cases (%) | Average NPV (R$) | Average IRR (% per Year) | Average Payback (Years) | Economically Feasible Cases (%) | Average NPV (R$) | Average IRR (% per Year) | Average Payback (Years) | |
2 | 68.9 | 7925.15 | 30.61 | 7.7 | 79.4 | 15,535.05 | 25.08 | 7.0 |
3–5 | 74.6 | 5998.29 | 35.17 | 6.1 | 78.3 | 12,450.05 | 30.93 | 5.6 |
6–10 | 75.0 | 5214.49 | 44.16 | 4.3 | 75.1 | 10,898.51 | 40.85 | 3.8 |
11–20 | 75.0 | 4033.54 | 50.18 | 3.6 | 75.0 | 8302.91 | 46.71 | 3.3 |
21–30 | 75.0 | 2888.02 | 49.83 | 3.6 | 75.0 | 5939.71 | 46.37 | 3.3 |
31–40 | 74.9 | 2092.95 | 45.54 | 4.0 | 75.0 | 4352.61 | 42.18 | 3.6 |
41–50 | 74.8 | 1236.01 | 36.82 | 5.1 | 75.0 | 2682.64 | 33.77 | 4.4 |
51–60 | 71.6 | 704.55 | 28.38 | 7.4 | 74.4 | 1597.10 | 25.01 | 6.1 |
61–70 | 63.9 | 405.77 | 21.94 | 10.4 | 71.2 | 989.13 | 18.19 | 8.3 |
71–80 | 16.3 | 381.21 | 21.53 | 11.5 | 44.9 | 470.08 | 11.05 | 12.9 |
81–90 | 4.7 | 592.12 | 29.34 | 6.5 | 5.3 | 1262.75 | 24.46 | 6.3 |
91–100 | 3.5 | 260.49 | 21.74 | 9.0 | 4.4 | 612.62 | 16.59 | 8.7 |
101–110 | 0.9 | 58.28 | 14.92 | 15.6 | 2.4 | 167.69 | 8.44 | 14.0 |
Total | 61.4 | 3147.13 | 41.38 | 5.1 | 64.2 | 6374.08 | 36.85 | 4.8 |
Tariff Format | Economically Feasible Cases (%) | Average NPV (R$) | Average IRR (% per Year) | Average Payback (Years) |
---|---|---|---|---|
Former | 74.6 | 13,830.38 | 21.36 | 7.4 |
Current | 74.8 | 16,893.73 | 24.95 | 6.1 |
Number of Flats in the Building | Former Tariff | Current Tariff | ||||||
---|---|---|---|---|---|---|---|---|
Economically Feasible Cases (%) | Average NPV (R$) | Average IRR (% per Year) | Average Payback (Years) | Economically Feasible Cases (%) | Average NPV (R$) | Average IRR (% per Year) | Average Payback (Years) | |
2 | 75.0 | 13,498.46 | 22.35 | 7.6 | 79.4 | 15,535.05 | 25.08 | 7.0 |
3–5 | 75.0 | 10,783.31 | 27.81 | 5.9 | 78.3 | 12,450.05 | 30.93 | 5.6 |
6–10 | 75.0 | 9105.91 | 35.52 | 4.4 | 75.1 | 10,898.51 | 40.85 | 3.8 |
11–20 | 75.0 | 6882.59 | 40.23 | 3.9 | 75.0 | 8302.91 | 46.71 | 3.3 |
21–30 | 75.0 | 4806.77 | 39.09 | 4.0 | 75.0 | 5939.71 | 46.37 | 3.3 |
31–40 | 75.0 | 3372.48 | 34.35 | 4.4 | 75.0 | 4352.61 | 42.18 | 3.6 |
41–50 | 74.5 | 1919.04 | 26.11 | 5.7 | 75.0 | 2682.64 | 33.77 | 4.4 |
51–60 | 72.1 | 995.47 | 17.45 | 8.7 | 74.4 | 1597.10 | 25.01 | 6.1 |
61–70 | 46.9 | 570.01 | 11.52 | 12.7 | 71.2 | 989.13 | 18.19 | 8.3 |
71–80 | 5.3 | 1430.41 | 24.29 | 6.0 | 44.9 | 470.08 | 11.05 | 12.9 |
81–90 | 5.1 | 835.40 | 18.30 | 7.9 | 5.3 | 1262.75 | 24.46 | 6.3 |
91–100 | 3.4 | 283.93 | 10.20 | 12.3 | 4.4 | 612.62 | 16.59 | 8.7 |
101–110 | 0.0 | - | - | - | 2.4 | 67.69 | 8.44 | 14.0 |
Total | 59.9 | 5506.89 | 31.97 | 5.4 | 64.2 | 6374.08 | 36.85 | 4.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borgert, A.E.; Ghisi, E. The Impact of the Water Tariff on the Economic Feasibility of Rainwater Harvesting for Use in Residential Buildings. Water 2024, 16, 1058. https://doi.org/10.3390/w16071058
Borgert AE, Ghisi E. The Impact of the Water Tariff on the Economic Feasibility of Rainwater Harvesting for Use in Residential Buildings. Water. 2024; 16(7):1058. https://doi.org/10.3390/w16071058
Chicago/Turabian StyleBorgert, Aline Eloize, and Enedir Ghisi. 2024. "The Impact of the Water Tariff on the Economic Feasibility of Rainwater Harvesting for Use in Residential Buildings" Water 16, no. 7: 1058. https://doi.org/10.3390/w16071058
APA StyleBorgert, A. E., & Ghisi, E. (2024). The Impact of the Water Tariff on the Economic Feasibility of Rainwater Harvesting for Use in Residential Buildings. Water, 16(7), 1058. https://doi.org/10.3390/w16071058