Geospatial Analysis of Transmissivity and Uncertainty in a Semi-Arid Karst Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Hydrogeological Conditions
2.2. Data and Well Characteristics
2.3. Linear Regression
2.4. Semivariogram
2.5. Ordinary Kriging
2.6. Conditional Stochastic Simulation
3. Results
3.1. Empirical Relationship between Specific Capacity and Transmissivity
3.2. Transmissivity Estimation and Spatial Interpolation
3.3. Stochastic Simulation of Transmissivity
4. Discussion
4.1. Regression
4.2. Variogram and Kriging
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.P.; Tan, Y.C.; Rouhani, S. Identifying spatial characteristics of transmissivity using simulated annealing and kriging methods. Environ. Geol. 2001, 41, 200–208. [Google Scholar] [CrossRef]
- Richard, S.K.; Chesnaux, R.; Rouleau, A.; Coupe, R.H. Estimating the reliability of aquifer transmissivity values obtained from specific capacity tests: Examples from the Saguenay-Lac-Saint-Jean aquifers, Canada. Hydrol. Sci. J. 2016, 61, 173–185. [Google Scholar] [CrossRef]
- Valigi, D.; Cambi, C.; Checcucci, R.; Di Matteo, L. Transmissivity Estimates by Specific Capacity Data of Some Fractured Italian Carbonate Aquifers. Water 2021, 13, 1374. [Google Scholar] [CrossRef]
- Bastos Leal, L.R.; Silva, H.P. Hydrologic Model and Management of the Aquifer-River Sistem on the Verde and Jacaré Rivers—Semi-arid Region of the Bahia State, Brazil; Final Report No. 002/02; SRH/UFBA: Salvador, Brazil, 2004. (In Portuguese) [Google Scholar]
- Ford, D.C.; Williams, P.W. Karst Hydrogeology and Geomorphology, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- El-Naqa, A. Estimation of transmissivity from specific capacity data in fractured carbonate rock aquifer, central Jordan. Environ. Geol. 1994, 23, 73–80. [Google Scholar] [CrossRef]
- Mace, R.E. Determination of transmissivity from specific capacity tests in a karst aquifer. Groundwater 1997, 35, 738–742. [Google Scholar] [CrossRef]
- Fabbri, P.; Piccinini, L. Assessing transmissivity from specific capacity in an alluvial aquifer in the middle Venetian plain (NE Italy). Water Sci. Technol. 2013, 67, 2000–2008. [Google Scholar] [CrossRef] [PubMed]
- Galvão, P.; Halthan, T.; Hirata, R. Transmissivity of aquifer by capture zone method: An application in the Sete Lagoas karst aquifer, MG, Brazil. Ann. Braz. Acad. Sci. 2017, 89, 91–102. [Google Scholar] [CrossRef]
- Al-Murad, M.; Zubari, W.K.; Uddin, S. Geoestatistical characterization of transmissivity: An example of Kuait Aquifers. Water 2018, 10, 828. [Google Scholar] [CrossRef]
- Barbosa, S.; Almeida, J.; Chambel, A. A geoestatiscal methodology to simulate the transmissivity in a highly heterogeneous rock body based on borehole data and pumping tests. Hydrogeol. J. 2019, 27, 1969–1998. [Google Scholar] [CrossRef]
- Lin, Y.P.; Chen, Y.W.; Chang, L.C.; Yeh, M.S.; Huang, G.H.; Petway, J.R. Groundwater Simulations and Uncertainty Analysis Using MODFLOW and Geostatistical Approach with Conditioning Multi-Aquifer Spatial Covariance. Water 2017, 9, 164. [Google Scholar] [CrossRef]
- Guerra, A.M. Processos de Carstificação e Hidrogeologia do Grupo Bambuí na Região de Irecê-Bahia. Ph.D. Thesis, Institute of Geosciences, University of São Paulo, São Paulo, Brazil, 1986. (In Portuguese with English Abstract). [Google Scholar]
- Silva, H.M. Geographic Information System of the Karst Aquifer of the Microregion of Irecê, Bahia: Subsidy for the Integrated Management of the Water Resources of the Verde and Jacaré River Basins. Master’s Thesis, Institute of Geosciences, Federal University of Bahia, Salvador, Brazil, 2005. (In Portuguese with English Abstract). [Google Scholar]
- Salles, L.Q.; Galvão, P.; Bastos-Leal, L.R.; Pereira, R.G.F.A.; Purificação, C.G.C.; Laureano, F.V. Evaluation of susceptibility for terrain collapse and subsidence in karst areas, municipality of Iraquara, Chapada Diamantina (BA), Brazil. Environ. Earth Sci. 2018, 77, 593. [Google Scholar] [CrossRef]
- Gonçalves, T.S.; Leal, L.B. Water potential in the Salitre karst Aquifer in the region of Irecê, Bahia. Águas Sub. 2018, 32, 191–199, (In Portuguese with English Abstract). [Google Scholar] [CrossRef]
- Barbosa, E.P.; Travassos, L.E.P. Caves, stories, history and populartraditions in the semi-desert (sertão) of Bahia, northeastern Brazil. Acta Carst. 2008, 37, 331–338. Available online: https://ojs.zrc-sazu.si/carsologica/article/view/155/145 (accessed on 26 February 2024).
- Cruz, F.W., Jr. Geomorphological Aspects and Geospeleology of the Karst of the Iraquara Region, North Center of the Chapada Diamantina. Master’s Thesis, Institute of Geosciences, University of São Paulo, São Paulo, Brazil, 1998. (In Portuguese with English Abstract). [Google Scholar]
- Auler, A.; Farrant, A.R. A brief introduction to karst and caves in Brazil. Proc. Univ. Bristol Spelaeol. Soc. 1996, 20, 187–200. Available online: https://www.ubss.org.uk/resources/proceedings/vol20/UBSS_Proc_20_3_187-200.pdf (accessed on 26 February 2024).
- Trajano, E.; Gallão, J.E.; Bichuette, M.E. Spots of high diversity of troglobites in Brazil: The challenge of measuring subterranean diversity. Biodivers. Conserv. 2016, 25, 1805–1828. [Google Scholar] [CrossRef]
- Silva, M.S.; Ferreira, R.L. The first two hotspots of subterranean biodiversity in South America. Subt. Biol. 2016, 19, 1–21. [Google Scholar] [CrossRef]
- Gallão, J.E.; Bichuette, M.E. Taxonomic distinctness and conservation of a new high biodiversity subterranean area in Brazil. Ann. Braz. Acad. Sci. 2015, 87, 209–217. [Google Scholar] [CrossRef]
- Bichuette, M.E.; Rantin, B.; Hingst-Zaher, E.; Trajano, E. Geometric morphometrics throws light on evolution of the subterranean catfish Rhamdiopsis krugi (Teleostei: Siluriformes: Heptapteridae) in eastern Brazil. Biol. J. Linn. Soc. 2015, 114, 136–151. [Google Scholar] [CrossRef]
- Bastos Leal, L.R.; Dutton, A.R.; Luz, J.G.; Barbosa, J.S.F. Hydrogeology and hydrochemistry of a Precambrian karst aquifer in a semi-arid region from Bahia, Brazil. In Proceedings of the Geological Society of America, Annual Meeting 2006, Philadelphia, PA, USA, 22–25 October 2006; Volume 38, p. 286. [Google Scholar]
- Feitosa, F.A.C.; Diniz, J.A.O.; Kirchheim, R.E.; Kiang, C.H.; Feitosa, E.C. Assessment of Groundwater Resources in Brazil: Current Status of Knowledge. In Groundwater Assessment, Modeling, and Management; CRC Press: Boca Raton, FL, USA, 2016; Available online: https://www.routledgehandbooks.com/doi/10.1201/9781315369044-5 (accessed on 5 August 2023).
- Funch, R.R.; Harley, R.M. Reconfiguring the boundaries of the Chapada Diamantina National Park (Brazil) using ecological criteria in the context of a human-dominated landscape. Land. Urban Plan. 2007, 83, 355–362. [Google Scholar] [CrossRef]
- Ribeiro, R.R.R.; Sulaiman, S.N.; Sieber, S.; Trejo-Rangel, M.A.; Campos, J.F. Integrated assessment of drought impacts on rural areas: The case of Chapada Diamantina Region in Brazil. GeoHazards 2021, 2, 442–453. [Google Scholar] [CrossRef]
- Pedreira, A.J. The Espinhaço Supergroup in the Central-Eastern Chapada Diamantina, Bahia: Sedimentology, Stratigraphy and Tectonics. Ph.D. Thesis, Institute of Geosciences, University of São Paulo, São Paulo, Brazil, 2004. (In Portuguese with English Abstract). [Google Scholar]
- Misi, A.; Veizer, J. Neoproterozoic carbonate sequences of the Una Group, Irecê Basin, Brazil: Chemostratigraphy, age and correlations. Precamb. Res. 1998, 89, 87–100. [Google Scholar] [CrossRef]
- Misi, A.; Kaufman, A.J.; Azmy, K.; Dardenne, M.A.; Sial, A.N.; de Oliveira, T.F. Neoproterozoic successions of the Sao Francisco craton, Brazil: The Bambuí, Una, Vazante and Vaza Barris/Miaba groups and their glaciogenic deposits. Geol. Soc. Lond. Memoir. 2011, 36, 509–522. [Google Scholar] [CrossRef]
- Brito Neves, B.B.; Fuck, R.A.; Martins, M. The Brasiliano collage in South America: A review. Braz. J. Geol. 2014, 4, 493–518. [Google Scholar] [CrossRef]
- Kuchenbecker, M.; Reis, H.L.S.; Fragoso, D.G.C. Caracterização estrutural e considerações sobre a evolução tectônica da Formação Salitre na porção central da Bacia de Irecê, norte do Cráton do São Francisco (BA). Geonomos 2011, 19, 42–49. [Google Scholar] [CrossRef]
- Furtado, C.P.Q.; Medeiros, W.E.; Borges, S.V.; Lopes, J.A.G.; Bezerra, F.H.R.; Lima-Filho, F.P.; Maia, R.P.; Bertotti, G.; Auler, A.S.; Teixeira, W.L.E. The influence of subseismic-scale fracture interconnectivity on fluid flow in fracture corridors of the Brejões carbonate karst system, Brazil. Mar. Petrol. Geol. 2022, 141, 105689. [Google Scholar] [CrossRef]
- Furtado, C.P.Q.; Borges, S.V.F.; Bezerra, F.H.R.; Castro, D.L.; Maia, R.P.; Teixeira, W.L.E.; Souza, A.M.; Auler, A.S.; Lima-Filho, F.P. The fracture-controlled carbonate Brejões Karst System mapped with UAV, LiDAR, and electroresistivity in the Irecê Basin—Brazil. J. South Amer. Earth Sci. 2022, 119, 103986. [Google Scholar] [CrossRef]
- Auler, A.S.; Smart, P.L. The influence of bedrock-derived acidity in the development of surface and underground karst: Evidence from the Precambrian carbonates of semi-arid northeastern Brazil. Earth Surf. Process. Landforms. 2003, 28, 157–168. [Google Scholar] [CrossRef]
- Ennes-Silva, R.A.; Bezerra, F.H.R.; Nogueira, F.C.C.; Fabrizio Balsamo, F.; Klimchouk, A.; Cazarin, C.L.; Auler, A.S. Superposed folding and associated fracturing influence hypogene karst development in Neoproterozoic carbonates, São Francisco Craton, Brazil. Tectonophysics 2016, 666, 244–259. [Google Scholar] [CrossRef]
- Salles, L.Q.; Bastos-Leal, L.R.; Pereira, R.G.F.A.; Laureano, F.V.; Gonçalves, T.S. Influence of hydrogeological aspects of karst aquifers on evolution of landscape in the Chapada Diamantina, Bahia, Brazil. Rer. Bras. Geomorf. 2018, 19, 93–106, (In Portuguese with English Abstract). [Google Scholar] [CrossRef]
- Beraldo, V.J. Environmental Isotopic and Hydrochemical Study of the Surface and Groundwater of the Irecê Region, Bahia. Master’s Thesis, Institute of Geosciences, Federal University of Bahia, Salvador, Brazil, 2005. (In Portuguese with English Abstract). [Google Scholar]
- Ramos, S.O.; Araújo, H.A.; Basos Leal, L.R.; Luz, J.A.G.; Dutton, A.R. Temporal variation of the water table of the karst aquifer of Irecê—Bahia: Contribution to the use and management of groundwater in the semi-arid region. Braz. J. Geol. 2007, 37, 227–233. [Google Scholar] [CrossRef]
- Theis, C.V. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Eos Trans. Am. Geoph. Union 1935, 16, 519–524. [Google Scholar] [CrossRef]
- SIAGAS. Sistema de Informação de Águas Subterrâneas, Home Page. Available online: http://siagasweb.cprm.gov.br/layout/visualizar_mapa.php (accessed on 17 July 2023).
- Sistema Nacional de Informações sobre Saneamento, Ministério do Desenvolvimento Regional, Brasil. Diagnóstico dos Serviços de Água e Esgoto—2023; Sistema Nacional de Informações sobre Saneamento: Brasília, Brasil, 2023; ISBN 9788578110796. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysis of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Isaaks, E.H.; Srivastava, R.M. Applied Geostatistics; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Theodossiou, N.; Latinopoulos, P. Evaluation and optimization of groundwater observation networks using the Kriging methodology. Environ. Model Softw. 2006, 21, 991–1000. [Google Scholar] [CrossRef]
- Chiles, J.P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty; John Wiley & Sons: New York, NY, USA, 1999. [Google Scholar]
- Rossi, M.E.; Deutsch, C.V. Mineral Resource Estimation; Springer: Dordrecht, The Netherlands; Berlin/Heidelberg, Germany; New York, NY, USA; London, UK, 2014; ISBN 978-1-4020-5717-5. [Google Scholar] [CrossRef]
- Huntley, D.; Nommensen, R.; Steffey, D. The use of specific capacity to assess transmissivity in fractured-rock aquifers. Ground Water 1992, 30, 396–402. [Google Scholar] [CrossRef]
- Laureano, F.V.; Karmann, I.; Granger, D.E.; Auler, A.S.; Almeida, R.P.; Cruz, F.W.; Strícks, N.M.; Novello, V.F. Two million years of river and cave aggradation in NE Brazil: Implications for speleogenesis and landscape evolution. Geomorphology 2016, 27, 63–77. [Google Scholar] [CrossRef]
- Mace, R.E. Estimating Transmissivity Using Specific-Capacity Data; Geological Circular 01-2; Bureau of Economic Geology: Austin, TX, USA, 2001. [Google Scholar]
Parameters | Min 1 | Max 2 | Mean | Median | SD 3 | CV 4 |
---|---|---|---|---|---|---|
Pumping rate (m3/d) | 5 | 2112 | 306 | 262 | 247 | 0.8 |
Water table depth (m) | 0 | 147 | 46 | 40 | 32 | 0.7 |
Water entrance depths (m) | 6.5 | 190 | 77 | 73 | 41 | 1 |
Well depth (m) | 21 | 200 | 123 | 120 | 39 | 0.7 |
Attributes | Min 1 | Max 2 | Mean | Median | SD 3 | CV 4 |
---|---|---|---|---|---|---|
Sc | 2 | 871 | 159 | 73 | 202 | 1.27 |
logSc | 0.37 | 2.94 | 1.78 | 1.86 | 0.68 | 0.38 |
T | 1 | 980 | 133 | 50 | 209 | 1.57 |
logT | −0.05 | 2.99 | 1.55 | 1.71 | 0.81 | 0.52 |
Attributes | Min 1 | Max 2 | Mean | Median | SD 3 | CV 4 |
---|---|---|---|---|---|---|
Sc | 0.9 | 8448 | 617 | 158 | 1106 | 1.79 |
logSc | −0.04 | 3.93 | 2.25 | 2.2 | 0.74 | 0.33 |
Temp | 0.4 | 7314 | 471 | 100 | 912 | 1.94 |
logTemp | −0.42 | 3.86 | 2.05 | 2 | 0.8 | 0.39 |
Sc | T | Regression | Variogram | |||||
---|---|---|---|---|---|---|---|---|
Reference | N 1 (-) | Min 2–Max 3 (m2/d) | N (-) | Min 2–Max 3 (m2/d) | Temp (m2/d) | R2 (-) | Nugget/Sill (-) | Range (km) |
[8] | 124 | 5.75–1141.4 | 45 | 8.41–1940 | 0.85Sc1.07 | 0.95 | 0.4 | 0.6 |
[10] | - | - | 422 | 50–2200 | - | - | 0.1 | 40 |
[7] | 71 | 14.6–12,948 | 71 | 1–100,000 | 0.76Sc1.08 | 0.89 | - | - |
[50] | 14 | 65.9–47,455 | 14 | 100–100,000 | 1.23Sc1.05 | 0.8 | - | - |
[16] | 1334 | 0.63–3738 | 213 | 0.64–3490 | 0.5Sc1.05 | 0.84 | - | - |
This study | 269 | 0.9–8448 | 51 | 1–980 | 0.42Sc1.08 | 0.85 | 0.6 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, T.d.S.; Klammler, H.; Bastos Leal, L.R. Geospatial Analysis of Transmissivity and Uncertainty in a Semi-Arid Karst Region. Water 2024, 16, 780. https://doi.org/10.3390/w16050780
Gonçalves TdS, Klammler H, Bastos Leal LR. Geospatial Analysis of Transmissivity and Uncertainty in a Semi-Arid Karst Region. Water. 2024; 16(5):780. https://doi.org/10.3390/w16050780
Chicago/Turabian StyleGonçalves, Thiago dos Santos, Harald Klammler, and Luíz Rogério Bastos Leal. 2024. "Geospatial Analysis of Transmissivity and Uncertainty in a Semi-Arid Karst Region" Water 16, no. 5: 780. https://doi.org/10.3390/w16050780
APA StyleGonçalves, T. d. S., Klammler, H., & Bastos Leal, L. R. (2024). Geospatial Analysis of Transmissivity and Uncertainty in a Semi-Arid Karst Region. Water, 16(5), 780. https://doi.org/10.3390/w16050780