Hybrid Integration of Bagging and Decision Tree Algorithms for Landslide Susceptibility Mapping
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. First Step of Analysis
3.2. Second Step of Analysis
Selection and Classification of Landslide—Related Variables
3.3. Third Step of Analysis
3.3.1. Correlation Attribute Evaluation—Importance Analysis
3.3.2. Certainty Factor Analysis
3.4. Fourth Step of Analysis
3.4.1. Reduced Error Pruning Decision Tree
3.4.2. Function Trees
3.4.3. Bagging
3.4.4. Receiver Operating Characteristic (ROC) Curves
3.4.5. Trade-Off Statistical Metrics
3.4.6. Pairwise Comparison Based on Chi-Square Test (χ2 Test)
3.4.7. Landslide Susceptibility Mapping
4. Results
Importance of Landslide Conditioning Factors
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akgun, A.; Türk, N. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environ. Earth Sci. 2010, 61, 595–611. [Google Scholar] [CrossRef]
- Tsangaratos, P.; Ilia, I. Landslide susceptibility mapping using a modified decision tree classifier in the Xanthi perfection, Greece. Landslides 2016, 13, 305–320. [Google Scholar] [CrossRef]
- Dagdelenler, G.; Nefeslioglu, H.A.; Gokceoglu, C. Modification of seed cell sampling strategy for landslide susceptibility mapping: An application from the eastern part of the Gallipoli Peninsula (Canakkale, Turkey). Bull. Eng. Geol. Environ. 2016, 75, 575–590. [Google Scholar] [CrossRef]
- Dehnavi, A.; Aghdam, I.N.; Pradhan, B.; Varzandeh, M.H.M. A new hybrid model using step-wise weight assessment ratio analysis (Swara) technique and adaptive neuro-fuzzy inference system (Anfis) for regional landslide hazard assessment in Iran. Catena 2015, 135, 122–148. [Google Scholar] [CrossRef]
- Hong, H.; Miao, Y.; Liu, J.; Zhu, A.-X. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. Catena 2019, 176, 45–64. [Google Scholar] [CrossRef]
- Yuan, C.; Moayedi, H. Evaluation and comparison of the advanced metaheuristic and conventional machine learning methods for the prediction of landslide occurrence. Eng. Comput. 2020, 36, 1801–1811. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Pourghasemi, H.R.; Indra, P.; Dholakia, M. Landslide susceptibility assesssment in the uttarakhand area (India) using gis: A comparison study of prediction capability of naïve bayes, multilayer perceptron neural networks, and functional trees methods. Theor. Appl. Climatol. 2017, 128, 255–273. [Google Scholar] [CrossRef]
- Dou, J.; Paudel, U.; Oguchi, T.; Uchiyama, S.; Hayakavva, Y.S. Shallow and deep-seated landslide differentiation using support vector machines: A case study of the Chuetsu area, Japan. Terr. Atmos. Ocean. Sci. 2015, 26, 227. [Google Scholar] [CrossRef]
- Hong, H.; Pradhan, B.; Xu, C.; Bui, D.T. Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena 2015, 133, 266–281. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm. Eng. Geol. 2015, 192, 101–112. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of gis-based logistic regression for landslide susceptibility mapping in the Kakuda-yahiko mountains, central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Lee, S. Application of an evidential belief function model in landslide susceptibility mapping. Comput. Geosci. 2012, 44, 120–135. [Google Scholar] [CrossRef]
- Su, G.; Zhang, Y.; Chen, G.; Yan, L. Fast estimation of slope stability based on gaussian process machine learning. Disaster Adv. 2013, 6, 81–91. [Google Scholar]
- Rodrigues, É.O.; Pinheiro, V.; Liatsis, P.; Conci, A. Machine learning in the prediction of cardiac epicardial and mediastinal fat volumes. Comput. Biol. Med. 2017, 89, 520–529. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I. In A novel hybrid intelligent approach of random subspace ensemble and reduced error pruning trees for landslide susceptibility modeling: A case study at Mu Cang Chai district, Yen Bai province, Viet Nam. In International Conference on Geo-Spatial Technologies and Earth Resources; Springer: Berlin/Heidelberg, Germany, 2017; pp. 255–269. [Google Scholar]
- Mathew, J.; Jha, V.; Rawat, G. Landslide susceptibility zonation mapping and its validation in part of garhwal lesser himalaya, India, using binary logistic regression analysis and receiver operating characteristic curve method. Landslides 2009, 6, 17–26. [Google Scholar] [CrossRef]
- Pham, B.T.; Bui, D.T.; Prakash, I. Bagging based support vector machines for spatial prediction of landslides. Environ. Earth Sci. 2018, 77, 146. [Google Scholar] [CrossRef]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using gis. Comput. Geosci. 2012, 51, 350–365. [Google Scholar] [CrossRef]
- Lu, P.; Rosenbaum, M. Artificial neural networks and grey systems for the prediction of slope stability. Nat. Hazards 2003, 30, 383–398. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Li, S.; Ren, F.; Du, Q. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang province, China. CATENA 2020, 188, 104425. [Google Scholar] [CrossRef]
- Zhu, A.-X.; Miao, Y.; Wang, R.; Zhu, T.; Deng, Y.; Liu, J.; Yang, L.; Qin, C.-Z.; Hong, H. A comparative study of an expert knowledge-based model and two data-driven models for landslide susceptibility mapping. Catena 2018, 166, 317–327. [Google Scholar] [CrossRef]
- Alkhasawneh, M.S.; Ngah, U.K.; Tay, L.T.; Isa, N.A.M.; Al-Batah, M.S. Modeling and testing landslide hazard using decision tree. J. Appl. Math. 2014, 2014, 929768. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I. Landslide susceptibility assessment in vietnam using support vector machines, decision tree, and naive bayes models. Math. Probl. Eng. 2012, 2012, 974638. [Google Scholar]
- Easdale, T.A.; Healey, J.R.; Grau, H.R.; Malizia, A. Tree life histories in a montane subtropical forest: Species differ independently by shade-tolerance, turnover rate and substrate preference. J. Ecol. 2007, 95, 1234–1249. [Google Scholar] [CrossRef]
- Gama, J. Functional trees for classification. In Proceedings of the 2001 IEEE International Conference on Data Mining, San Jose, CA, USA, 29 November–2 December 2001. [Google Scholar]
- Gama, J. Functional Trees. Mach. Learn. 2004, 55, 219–250. [Google Scholar] [CrossRef]
- Bai, S.B.; Wang, J.; Lü, G.-N.; Zhou, P.-G.; Hou, S.-S.; Xu, S.-N. Gis-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Lee, S. Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using gis. Environ. Manag. 2004, 34, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Choi, C.; Kim, B.; Kim, J. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ. Earth Sci. 2013, 68, 1443–1464. [Google Scholar] [CrossRef]
- Chen, W.; Chai, H.; Zhao, Z.; Wang, Q.; Hong, H. Landslide susceptibility mapping based on gis and support vector machine models for the Qianyang county, China. Environ. Earth Sci. 2016, 75, 474. [Google Scholar] [CrossRef]
- Kumar, D.; Thakur, M.; Dubey, C.S.; Shukla, D.P. Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology 2017, 295, 115–125. [Google Scholar]
- Yang, D.; Li, J. Study on application of support vector machine in slope realibility analtsis. Ground Water 2010, 32, 141–142+145. [Google Scholar]
- Poudyal, C.P.; Chang, C.; Oh, H.-J.; Lee, S. Landslide susceptibility maps comparing frequency ratio and artificial neural networks: A case study from the Nepal Himalaya. Environ. Earth Sci. 2010, 61, 1049–1064. [Google Scholar] [CrossRef]
- Shahabi, H.; Khezri, S.; Ahmad, B.B.; Hashim, M. Landslide susceptibility mapping at central zab basin, iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 2014, 115, 55–70. [Google Scholar] [CrossRef]
- Dai, F.; Lee, C. Landslide characteristics and slope instability modeling using gis, Lantau Island, Hong Kong. Geomorphology 2002, 42, 213–228. [Google Scholar] [CrossRef]
- Pan, X.D.; Nakamura, H.; Tamotsu, N.; Nan, Z.T. A gis-based landslide hazard assessment by multiple regression analysis—Art. No. 67541m. In Geoinformatics 2007: Geospatial Information Technology and Applications; SPIE: Bellingham, WA, USA, 2007. [Google Scholar]
- Yong, J.W.; Tao, J.P.; Zhong, Z.C. Factors influencing the distribution and growth of dwarf Bamboo, Fargesia Nitida, in a subalpine forest in wolong nature reserve, Southwest China. Ecol. Res. 2009, 24, 1013–1021. [Google Scholar]
- Ibrahim, A.L.B.; Jaw, S.W.; Abdullah, M.A.B.; Reba, M.N.M.; Tam, T.H.; Tan, M.L. Landslide susceptibility mapping using evidential belief function model. Geocarto Int. 2015, 34, 348–367. [Google Scholar]
- Moon, W.M. Integration of geophysical and geological data using evidential belief function. IEEE Trans. Geosci. Remote Sens. 1990, 28, 711–720. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, F.; Chen, H.; Wu, Y.; Li, T.; Li, W.; Wang, Q.; Liu, P. Gis-based landslide susceptibility analysis using frequency ratio and evidential belief function models. Environ. Earth Sci. 2016, 75, 948. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Masuda, T.; Nishino, K. Gis-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ. Geol. 2008, 54, 311–324. [Google Scholar] [CrossRef]
- Hong, H. Rainfall induced landslide susceptibility mapping using weight-of-evidence, linear and quadratic discriminant and logistic model tree method. In Proceedings of the AGU Fall Meeting Abstracts, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Lee, S.; Choi, J.; Chwae, U.; Chang, B. Landslide susceptibility analysis using weight of evidence. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Zhu, C.; Wang, X. Landslide Susceptibility Mapping: A Comparison of Information and Weights-of-Evidence Methods in Three Gorges Area. In Proceedings of the 2009 International Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009; Volume III; pp. 342–346. [Google Scholar] [CrossRef]
- Choi, J.; Oh, H.-J.; Won, J.-S.; Lee, S. Validation of an artificial neural network model for landslide susceptibility mapping. Environ. Earth Sci. 2010, 60, 473–483. [Google Scholar] [CrossRef]
- Mansor, S. Landslide susceptibility analysis using an artificial neural network model. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology VII; SPIE: Bellingham, WA, USA, 2007; Volume 6749, p. 67490J. [Google Scholar]
- Pradhan, B.; Lee, S. Landslide risk analysis using artificial neural network model focusing on different training sites. Int. J. Phys. Sci. 2009, 4, 1–15. [Google Scholar]
- Lee, S.; Ryu, J.H.; Won, J.S.; Park, H.J. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng. Geol. 2004, 71, 289–302. [Google Scholar] [CrossRef]
- Ma, S.C.; Shi, H.B. Tree-augmented naive bayes ensembles. In Proceedings of the 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China, 26–29 August 2004. [Google Scholar]
- Wang, S.; Jiang, L.; Li, C. Adapting naive bayes tree for text classification. Knowl. Inf. Syst. 2015, 44, 77–89. [Google Scholar] [CrossRef]
- Chen, W.; Yan, X.; Zhou, Z.; Hong, H.; Pradhan, B. Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, naive bayes and rbfnetwork models for the Long County area (China). Bull. Eng. Geol. Environ. 2019, 78, 247–266. [Google Scholar] [CrossRef]
- Cawley, G.; Talbot, N. Efficient model selection for kernel logistic regression. In Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK, 26 August 2004. [Google Scholar]
- Cawley, G.C.; Talbot, N.L.C. Efficient approximate leave-one-out cross-validation for kernel logistic regression. Mach. Learn. 2008, 71, 243–264. [Google Scholar] [CrossRef]
- Keerthi, S.S.; Duan, K.; Shevade, S.K.; Poo, A.N. A fast dual algorithm for kernel logistic regression. Mach. Learn. 2002, 61, 151–165. [Google Scholar] [CrossRef]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856, Erratum in Landslides 2016, 13, 1315–1318. [Google Scholar] [CrossRef]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Sohrabi, M.; Kalantari, Z. Gis-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J. Mt. Sci. 2019, 16, 595–618. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Bui, D.T. Spatial prediction of landslides using a hybrid machine learning approach based on random subspace and classification and regression trees. Geomorphology 2018, 303, 256–270. [Google Scholar] [CrossRef]
- Breiman, L. Random forrest. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide susceptibility assessment in Lianhua County (China): A comparison between a random forest data mining technique and bivariate and multivariate statistical models. Geomorphology 2016, 259, 105–118. [Google Scholar] [CrossRef]
- Provost, F.; Hibert, C.; Malet, J.-P. Automatic classification of endogenous landslide seismicity using the random forest supervised classifier. Geophys. Res. Lett. 2017, 44, 113–120. [Google Scholar] [CrossRef]
- Tien Bui, D.; Nguyen, Q.P.; Hoang, N.-D.; Klempe, H. A novel fuzzy k-nearest neighbor inference model with differential evolution for spatial prediction of rainfall-induced shallow landslides in a tropical hilly area using gis. Landslides 2017, 14, 1–17. [Google Scholar] [CrossRef]
- Aghdam, I.N.; Pradhan, B.; Panahi, M. Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (fr and woe) and adaptive neuro-fuzzy inference system (anfis) at southern zagros mountains in Iran. Environ. Earth Sci. 2017, 76, 237. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Kornejady, A.; Zhang, N. Landslide spatial modeling: Introducing new ensembles of ann, maxent, and svm machine learning techniques. Geofis. Int. 2017, 305, 314–327. [Google Scholar] [CrossRef]
- Tien Bui, D.; Ho, T.-C.; Pradhan, B.; Pham, B.-T.; Nhu, V.-H.; Revhaug, I. Gis-based modeling of rainfall-induced landslides using data mining-based functional trees classifier with adaboost, bagging, and multiboost ensemble frameworks. Environ. Earth Sci. 2016, 75, 1101. [Google Scholar] [CrossRef]
- Althuwaynee, O.F.; Pradhan, B.; Lee, S. A novel integrated model for assessing landslide susceptibility mapping using chaid and ahp pair-wise comparison. Int. J. Remote Sens. 2016, 37, 1190–1209. [Google Scholar] [CrossRef]
- Pham, B.T.; Nguyen, V.-T.; Ngo, V.-L.; Trinh, P.T.; Ngo, H.T.T.; Bui, D.T. A novel hybrid model of rotation forest based functional trees for landslide susceptibility mapping: A case study at Kon Tum province, Vietnam. In International Conference on Geo-Spatial Technologies and Earth Resources; Springer: Berlin/Heidelberg, Germany, 2017; pp. 186–201. [Google Scholar]
- Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Bui, D.T. Landslide susceptibility modeling using reduced error pruning trees and different ensemble techniques: Hybrid machine learning approaches. Catena 2019, 175, 203–218. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Bui, D.T.; Pradhan, B.; Acharya, T.D.; Pham, B.T.; Zhu, A.-X.; Chen, W.; Ahmad, B.B. Landslide susceptibility mapping using j48 decision tree with adaboost, bagging and rotation forest ensembles in the Guangchang area (China). Catena 2018, 163, 399–413. [Google Scholar] [CrossRef]
- Chen, W.; Shahabi, H.; Zhang, S.; Khosravi, K.; Shirzadi, A.; Chapi, K.; Pham, B.T.; Zhang, T.; Zhang, L.; Chai, H. Landslide susceptibility modeling based on gis and novel bagging-based kernel logistic regression. Appl. Sci. 2018, 8, 2540. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, W. Gis-based evaluation of landslide susceptibility models using certainty factors and functional trees-based ensemble techniques. Appl. Sci. 2020, 10, 16. [Google Scholar] [CrossRef]
- Pradhan, A.; Kim, Y. Evaluation of a combined spatial multi-criteria evaluation model and deterministic model for landslide susceptibility mapping. Catena 2016, 140, 125–139. [Google Scholar] [CrossRef]
- Zhou, C.; Yin, K.; Cao, Y.; Ahmed, B.; Li, Y.; Catani, F.; Pourghasemi, H.R. Landslide susceptibility modeling applying machine learning methods: A case study from Longju in the three Gorges Reservoir area, China. Comput. Geosci. 2018, 112, 23–37. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, Y.; Wang, S.; Wang, F. Machine learning and fractal theory models for landslide susceptibility mapping: Case study from the Jinsha River Basin. Geomorphology 2020, 351, 106975. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Süzen, M.L.; Kaya, B.Ş. Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. Int. J. Digit. Earth 2012, 5, 338–355. [Google Scholar] [CrossRef]
- Dou, J.; Bui, D.T.; Yunus, A.P.; Jia, K.; Song, X.; Revhaug, I.; Xia, H.; Zhu, Z. Optimization of causative factors for landslide susceptibility evaluation using remote sensing and gis data in parts of Niigata, Japan. PLoS ONE 2015, 10, e0133262. [Google Scholar] [CrossRef] [PubMed]
- Dou, J.; Oguchi, T.; Hayakawa, Y.S.; Uchiyama, S.; Saito, H.; Paudel, U. Gis-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu area, central Japan. In Landslide Science for a Safer Geoenvironment; Springer: Berlin/Heidelberg, Germany, 2014; pp. 419–424. [Google Scholar]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C.; Mohammadi, M.; Moradi, H.R. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz Watershed, Iran. Arab. J. Geosci. 2013, 6, 2351–2365. [Google Scholar] [CrossRef]
- Bui, D.T.; Tuan, T.A.; Klempe, H.; Pradhan, B.; Revhaug, I. Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides 2016, 13, 361–378. [Google Scholar]
- Chen, W.; Xie, X.; Peng, J.; Wang, J.; Duan, Z.; Hong, H. Gis-based landslide susceptibility modelling: A comparative assessment of kernel logistic regression, naïve-bayes tree, and alternating decision tree models. Geomat. Nat. Hazards Risk 2017, 8, 950–973. [Google Scholar] [CrossRef]
- Galathiya, A.; Ganatra, A.; Bhensdadia, C. Improved decision tree induction algorithm with feature selection, cross validation, model complexity and reduced error pruning. Int. J. Comput. Sci. Inf. Technol. 2012, 3, 3427–3431. [Google Scholar]
- Khosravi, K.; Pham, B.T.; Chapi, K.; Shirzadi, A.; Shahabi, H.; Revhaug, I.; Prakash, I.; Bui, D.T. A comparative assessment of decision trees algorithms for flash flood susceptibility modeling at Haraz Watershed, Northern iran. Sci. Total Environ. 2018, 627, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Kääriäinen, M.; Malinen, T.; Elomaa, T. Selective rademacher penalization and reduced error pruning of decision trees. J. Mach. Learn. Res. 2004, 5, 1107–1126. [Google Scholar]
- Quinlan, J.R. Simplifying decision trees. Int. J. Man-Mach. Stud. 1987, 27, 221–234. [Google Scholar] [CrossRef]
- Polo, J.-L.; Berzal, F.; Cubero, J.-C. Class-oriented reduction of decision tree complexity. In International Symposium on Methodologies for Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 48–57. [Google Scholar]
- WANG, D. A three-dimensional two-level gradient smoothing meshfree method for rainfall induced landslide simulations. Front. Struct. Civ. Eng. 2019, 13, 337–352. [Google Scholar] [CrossRef]
- Quinlan, J.R. Improved use of continuous attributes in c4.5. J. Artif. Intell. Res. 1996, 4, 77–90. [Google Scholar] [CrossRef]
- Doetsch, P.; Buck, C.; Golik, P.; Kramp, M.; Laudenberg, J.; Oberdörfer, C.; Steingrube, P.; Forster, J.; Mauser, A.; Dror, G. Logistic model trees with auc split criterion for the kdd cup 2009 small challenge. In KDD-Cup 2009 Competition; PMLR: Lille, France, 2009. [Google Scholar]
- Landwehr, N.; Hall, M.; Frank, E. Logistic model trees. Mach. Learn. 2005, 59, 161–205. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Tien Bui, D.; Pradhan, B.; Revhaug, I.; Tran, C.T. A comparative assessment between the application of fuzzy unordered rules induction algorithm and j48 decision tree models in spatial prediction of shallow landslides at lang son city, vietnam. In Remote Sensing Applications in Environmental Research; Springer: Berlin/Heidelberg, Germany, 2014; pp. 87–111. [Google Scholar]
- Youssef, A.M.; Pradhan, B.; Jebur, M.N.; El-Harbi, H.M. Landslide susceptibility mapping using ensemble bivariate and multivariate statistical models in Fayfa Area, Saudi Arabia. Environ. Earth Sci. 2015, 73, 3745–3761. [Google Scholar] [CrossRef]
- Chen, W.; Tsangaratos, P.; Ilia, I.; Duan, Z.; Chen, X. Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods. Sci. Total Environ. 2019, 684, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Akgun, A. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides 2012, 9, 93–106. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, Y.; Chen, Z.; Liang, S.; Zhao, H.; Hong, H. Application of alternating decision tree with adaboost and bagging ensembles for landslide susceptibility mapping. Catena 2020, 187, 104396. [Google Scholar] [CrossRef]
- Arabameri, A.; Chen, W.; Lombardo, L.; Blaschke, T.; Tien Bui, D. Hybrid computational intelligence models for improvement gully erosion assessment. Remote Sens. 2020, 12, 140. [Google Scholar] [CrossRef]
- Rahmati, O.; Kornejady, A.; Samadi, M.; Deo, R.C.; Conoscenti, C.; Lombardo, L.; Dayal, K.; Taghizadeh-Mehrjardi, R.; Pourghasemi, H.R.; Kumar, S. Pmt: New analytical framework for automated evaluation of geo-environmental modelling approaches. Sci. Total Environ. 2019, 664, 296–311. [Google Scholar] [CrossRef] [PubMed]
- Thiery, Y.; Malet, J.P.; Sterlacchini, S.; Puissant, A.; Maquaire, O. Landslide susceptibility assessment by bivariate methods at large scales: Application to a complex mountainous environment. Geomorphology 2007, 92, 38–59. [Google Scholar] [CrossRef]
- Chung, C.-J.F.; Fabbri, A.G. Validation of spatial prediction models for landslide hazard mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- Chen, W.; Shahabi, H.; Shirzadi, A.; Hong, H.; Akgun, A.; Tian, Y.; Liu, J.; Zhu, A.-X.; Li, S. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bull. Eng. Geol. Environ. 2019, 78, 4397–4419. [Google Scholar] [CrossRef]
- Bui, D.T.; Panahi, M.; Shahabi, H.; Singh, V.P.; Shirzadi, A.; Chapi, K.; Khosravi, K.; Chen, W.; Panahi, S.; Li, S. Novel hybrid evolutionary algorithms for spatial prediction of floods. Sci. Rep. 2018, 8, 15364. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef]
- Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Lee, M.J.; Choi, J.-W.; Oh, H.-J.; Won, J.-S.; Park, I.; Lee, S. Ensemble-based landslide susceptibility maps in Jinbu area, Korea. Environ. Earth Sci. 2012, 67, 23–37. [Google Scholar] [CrossRef]
- Jiao, Y.; Zhao, D.; Ding, Y.; Liu, Y.; Xu, Q.; Qiu, Y.; Liu, C.; Liu, Z.; Zha, Z.; Li, R. Performance evaluation for four gis-based models purposed to predict and map landslide susceptibility: A case study at a world heritage site in Southwest China. CATENA 2019, 183, 104221. [Google Scholar] [CrossRef]
- Kuncheva, L.I. Combining Pattern Classifiers: Methods and Algorithms; Wiley-Interscience: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ilia, I.; Koumantakis, I.; Rozos, D.; Koukis, G.; Tsangaratos, P. A geographical information system (GIS) based probabilistic certainty factor approach in assessing landslide susceptibility: The case study of Kimi, Euboea, Greece. In Engineering Geology for Society and Territory—Volume 2: Landslide Processes; Springer: Berlin/Heidelberg, Germany, 2015; pp. 1199–1204. [Google Scholar]
- Tsangaratos, P.; Ilia, I.; Rozos, D. Case event system for landslide susceptibility analysis. In Landslide Science and Practice: Landslide Inventory and Susceptibility and Hazard Zoning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 1, pp. 585–593. [Google Scholar]
- Peng, T.; Chen, Y.; Chen, W. Landslide Susceptibility Modeling Using Remote Sensing Data and Random SubSpace-Based Functional Tree Classifier. Remote Sens. 2022, 14, 4803. [Google Scholar] [CrossRef]
Landslide-Related Factor | Average Merit (AM) | Standard Deviation (Std.) |
---|---|---|
Slope | 0.612 | ±0.012 |
Terrain Ruggedness Index | 0.456 | ±0.015 |
Distance to Rivers | 0.262 | ±0.019 |
Convergence Index | 0.187 | ±0.012 |
Aspect | 0.182 | ±0.011 |
Rainfall | 0.176 | ±0.012 |
Land Use | 0.172 | ±0.011 |
Plan Curvature | 0.159 | ±0.009 |
Profile Curvature | 0.157 | ±0.007 |
Slope Length | 0.140 | ±0.011 |
Distance to Roads | 0.116 | ±0.014 |
Elevation | 0.115 | ±0.116 |
NDVI | 0.088 | ±0.010 |
Lithology | 0.071 | ±0.017 |
Soil | 0.029 | ±0.014 |
Topography Position Index | 0.029 | ±0.014 |
Factors | Class | Certainty Factor | Factors | Class | Certainty Factor |
---|---|---|---|---|---|
Slope (°) | 0–10 | −1.000 | Terrain Ruggedness Index | 0–5.05 | −0.964 |
11–20 | −0.964 | 5.05–8.62 | −0.464 | ||
21–30 | 0.563 | 8.62–12.48 | 0.501 | ||
31–40 | 0.598 | 12.48–17.82 | 0.568 | ||
41–50 | 0.656 | 17.82–75.75 | 0.574 | ||
51–60 | −1.000 | Convergence Index | −99.34–−27.72 | −1.000 | |
61–68.30 | −1.000 | −27.72–−6.92 | −0.332 | ||
Aspect | Flat | −1.000 | −6.92–4.63 | 0.173 | |
North | 0.340 | 4.63–24.66 | 0.010 | ||
Northeast | 0.108 | 24.66–97.05 | −0.864 | ||
East | 0.192 | Distance to rivers (m) | 0–200 | 0.446 | |
Southeast | 0.050 | 200–400 | 0.392 | ||
South | −0.333 | 400–600 | −0.380 | ||
Southwest | −0.551 | 600–800 | −0.304 | ||
West | −0.144 | >800 | −0.412 | ||
Northwest | 0.134 | Distance to roads (m) | 0–300 | 0.096 | |
Elevation (m) | 492–600 | −1.000 | 300–600 | 0.452 | |
601–700 | −0.372 | 600–900 | 0.192 | ||
701–800 | −0.608 | 900–1200 | −0.120 | ||
801–900 | 0.080 | >1200 | −0.089 | ||
901–1000 | −0.163 | Rainfall (mm/yr) | <460 | 0.342 | |
1001–1100 | 0.207 | 460–470 | 0.231 | ||
1101–1200 | 0.173 | 470–480 | 0.224 | ||
1201–1300 | −0.442 | 480–490 | −0.109 | ||
1301–1392 | 0.349 | 490–500 | −0.238 | ||
Plan curvature | −9.17–−0.05 | 0.024 | >500 | −0.534 | |
−0.05–0.05 | −1.000 | NDVI | −0.22–0.10 | −0.167 | |
0.05–9.75 | 0.087 | 0.11–0.15 | −0.186 | ||
Profile curvature | −12.83–−0.05 | 0.029 | 0.16−0.20 | 0.150 | |
−0.05–0.05 | −1.000 | 0.21−0.25 | 0.007 | ||
0.05–14.85 | 0.063 | 0.26–0.51 | 0.012 | ||
Slope Length | 0–39.86 | −0.262 | Soil | Calcaric Cambisol | 0.000 |
39.86–112.33 | 0.290 | Eutric Cambisol | −0.105 | ||
112.33–202.91 | 0.251 | Calcaric Fluvisol | 0.084 | ||
202.91–329.73 | −0.259 | Rendzic Leptosol | −0.484 | ||
329.73–923.97 | −0.618 | Lithology | Alluvial and Pluvial deposits | −0.224 | |
Topographic Position Index | −87.9–−12.52 | 0.112 | Yellowish brown eolian loess | −0.108 | |
−12.52–−4.81 | −0.049 | Brown eoalian loess with paleosoil interlayers | −0.155 | ||
−4.81–2.32 | −0.050 | Red-brown clay with calcareous nodules | 0.544 | ||
2.32–10.03 | 0.010 | Mudstone, sandstone, siltstone, shale | 0.165 | ||
10.03–63.45 | 0.087 | Landuse | Farm land | 0.064 | |
Forest land | 0.063 | ||||
Grassland | −0.079 | ||||
Water | −1.000 | ||||
Construction land | 0.544 | ||||
Unused land | −1.000 |
Models | Parameters |
---|---|
Bagging | The number of iterations: 10; the number of execution slots (threads) to use for constructing the ensemble: 1; seed: 1 |
REPTree | Seed: 1; number of folds: 3; the minimum proportion of the variance: 0.001; the maximum tree depth: −1; the minimum total weight of the instances in a leaf: 2 |
FT | Number of iterations for LogitBoost: 15; the minimum number of instances at which a node is considered for splitting: 15 |
Test Variables | BREPTree Model | REPTree Model | FT Model | BFT Model |
---|---|---|---|---|
ROC Curve Area | 0.853 | 0.798 | 0.795 | 0.851 |
Standard Error | 0.018 | 0.022 | 0.022 | 0.019 |
95% Confidence Interval | 0.816–0.889 | 0.755–0.842 | 0.752–0.838 | 0.814–0.888 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Test Variables | BREPTree Model | REPTree Model | FT Model | BFT Model |
---|---|---|---|---|
ROC Curve Area | 0.886 | 0.842 | 0.856 | 0.895 |
Standard Error | 0.025 | 0.029 | 0.030 | 0.025 |
95% Confidence Interval | 0.836–0.936 | 0.785–0.900 | 0.797–0.914 | 0.845–0.945 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Metrics | BREPTree | REPTree | FT | BFT |
---|---|---|---|---|
TP | 79 | 81 | 75 | 83 |
TN | 72 | 66 | 76 | 78 |
FP | 21 | 27 | 17 | 15 |
FN | 14 | 12 | 18 | 10 |
PPR | 0.790 | 0.750 | 0.815 | 0.847 |
NPR | 0.837 | 0.846 | 0.809 | 0.886 |
Sensitivity | 0.849 | 0.871 | 0.806 | 0.892 |
Specificity | 0.774 | 0.710 | 0.817 | 0.839 |
Accuracy | 0.812 | 0.790 | 0.812 | 0.866 |
F-score | 0.819 | 0.806 | 0.811 | 0.869 |
MCC | 0.625 | 0.588 | 0.624 | 0.732 |
TSS | 0.624 | 0.581 | 0.623 | 0.731 |
RMSE | 0.245 | 0.274 | 0.388 | 0.343 |
Pair | BREPTree vs. REPTree | BREPTree vs. FT | BREPTree vs. BFT | REPTree vs. FT | REPTree vs. BFT | FT vs. BFT |
---|---|---|---|---|---|---|
Chi-square | 11.205 | 9.264 | 0.0230 | 0.0214 | 8.436 | 9.547 |
p-value | 0.001 | 0.002 | 0.879 | 0.884 | 0.004 | 0.002 |
Significance | Yes | Yes | No | No | Yes | Yes |
Models | Very Low Susceptibility | Low Susceptibility | Moderate Susceptibility | High Susceptibility | Very High Susceptibility |
---|---|---|---|---|---|
REPT | 58.74 | 7.92 | 6.08 | 26.46 | 0.81 |
FT | 56.40 | 7.08 | 9.18 | 11.31 | 16.03 |
BREPT | 58.99 | 6.20 | 9.81 | 12.13 | 12.87 |
BFT | 45.52 | 11.11 | 13.47 | 15.99 | 13.91 |
Model | Description | Relevance in Bagging Approach and Landslide Susceptibility Prediction |
---|---|---|
REPT | Reduced error pruning tree (REPTree): A fast decision tree learner that builds and prunes a tree using reduced error pruning. Efficient in various classification tasks. | As a base learner, REPT can be prone to overfitting, but when used within a bagging framework (as in BREPT), its stability and accuracy are enhanced, making it more suitable for complex tasks like landslide susceptibility prediction. |
FT | Functional tree (FT): Integrates logistic and linear regression models at the leaves of the tree, providing nuanced classification or regression outputs. | FT’s ability to capture complex data patterns makes it a strong candidate for ensemble methods. It is effective in hybrid models due to its detailed approach to data analysis. |
BREPT | Bagged REPTree: An ensemble of REPT models created using bagging. Each model in the ensemble is trained on a different subset of the data. | Bagging reduces overfitting and variance in REPT, thus enhancing its predictive accuracy and stability. This is critical for predicting phenomena with high variability, like landslides. |
BFT | Bagged functional tree: Employs bagging with FT models as base learners. Each model is trained on a distinct data subset. | Combines bagging’s variance reduction and error compensation with FT’s complex data pattern recognition. Highly effective in landslide susceptibility prediction due to its robustness and reliability, as indicated by high AUC values and minimal standard errors. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Ning, Z.; Ding, X.; Wu, J.; Wang, Z.; Tsangaratos, P.; Ilia, I.; Wang, Y.; Chen, W. Hybrid Integration of Bagging and Decision Tree Algorithms for Landslide Susceptibility Mapping. Water 2024, 16, 657. https://doi.org/10.3390/w16050657
Zhang Q, Ning Z, Ding X, Wu J, Wang Z, Tsangaratos P, Ilia I, Wang Y, Chen W. Hybrid Integration of Bagging and Decision Tree Algorithms for Landslide Susceptibility Mapping. Water. 2024; 16(5):657. https://doi.org/10.3390/w16050657
Chicago/Turabian StyleZhang, Qi, Zixin Ning, Xiaohu Ding, Junfeng Wu, Zhao Wang, Paraskevas Tsangaratos, Ioanna Ilia, Yukun Wang, and Wei Chen. 2024. "Hybrid Integration of Bagging and Decision Tree Algorithms for Landslide Susceptibility Mapping" Water 16, no. 5: 657. https://doi.org/10.3390/w16050657
APA StyleZhang, Q., Ning, Z., Ding, X., Wu, J., Wang, Z., Tsangaratos, P., Ilia, I., Wang, Y., & Chen, W. (2024). Hybrid Integration of Bagging and Decision Tree Algorithms for Landslide Susceptibility Mapping. Water, 16(5), 657. https://doi.org/10.3390/w16050657