Numerical Simulation and Application of Radial Steel Gate Structure Based on Building Information Modeling under Different Opening Degrees
Abstract
:1. Introduction
2. Methodology
2.1. VOF Two-Phase Flow
2.2. Governing Equation of Fluid–Structure Coupling
- (1)
- Fluid dynamic pressure
- (2)
- Contact dynamic pressure
- (3)
- Equivalent node stress
- (4)
- Coupling surface finite element equation
2.3. Dynamic Balance Equation of the Gate
2.4. The Numerical Simulation Framework Based on BIM
3. Numerical Simulation of a Radial Gate Based on BIM
3.1. Project Overview
3.2. BIM Model of the Gate
3.3. Finite Element Model of the Radial Gate
3.4. Finite Element Model Meshing
3.5. Connection Relation
3.6. Constraints and Solution Parameters
4. Results and Discussion
4.1. Flow Value and Surface Curve Analysis
4.2. Water Pressure Result Analysis
4.3. Analysis of the Stress Results of the Radial Gate
4.4. Analysis of the Deformation Results of the Radial Gate
4.5. Analysis of the Natural Vibration Frequency Results of the Radial Gate
5. Information Management Process Based on BIM and Numerical Simulation Results
5.1. Establishment of Information Management Process
5.2. Application of Information Management Process
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, C.; Liu, J.; Zhao, C.; Liu, F.; Wang, Z. Dynamic failures of water controlling radial gates of hydro-power plants: Advancements and future perspectives. Eng. Fail. Anal. 2023, 148, 107168. [Google Scholar] [CrossRef]
- Xu, C.; Wang, Z. New insights into dynamic instability regions of spillway radial gate owing to fluid-induced parametric oscillation. Nonlinear Dyn. 2022, 111, 4053–4070. [Google Scholar] [CrossRef]
- Zhang, Z.; Lan, J.; Feng, F.; Zhi, X. Selection of New Type Radial Steel Gate and Analysis of Static and Dynamic Characteristics. Int. J. Steel Struct. 2021, 21, 1630–1643. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Y.; Li, S.; Dong, X. Sensitivity analysis of design parameters of main beam of radial gate. In Proceedings of the 2023 9th International Conference on Architectural, Civil and Hydraulic Engineering (ICACHE 2023), online, 14 October 2023; Atlantis Press: Amsterdam, The Netherlands, 2023; pp. 688–694. [Google Scholar]
- Salazar, F.; Morán, R.; Rossi, R.; Oñate, E. Analysis of the discharge capacity of radial-gated spillways using CFD and ANN—Oliana Dam case study. J. Hydraul. Res. 2013, 51, 244–252. [Google Scholar] [CrossRef]
- Faridmehr, I.; Farokhi Nejad, A.; Baghban, M.H.; Ghorbani, R. Numerical and Physical Analysis on the Response of a Dam’s Radial Gate to Extreme Loading Performance. Water 2020, 12, 2425. [Google Scholar] [CrossRef]
- Zhang, B.; Jing, X. Theoretical analysis and simulation calculation of hydrodynamic pressure pulsation effect and flow induced vibration response of radial gate structure. Sci. Rep. 2022, 12, 21932. [Google Scholar] [CrossRef]
- Li, T.; Pannala, S.; Shahnam, M. CFD simulations of circulating fluidized bed risers, part II, evaluation of differences between 2D and 3D simulations. Powder Technol. 2014, 254, 115–124. [Google Scholar] [CrossRef]
- Teng, S.; Chen, G.; Liu, Z.; Cheng, L.; Sun, X. Multi-sensor and decision-level fusion-based structural damage detection using a one-dimensional convolutional neural network. Sensors 2021, 21, 3950. [Google Scholar] [CrossRef] [PubMed]
- Hassanvand, A.; Hashemabadi, S.H. Direct numerical simulation of interphase mass transfer in gas–liquid multiphase systems. Int. Commun. Heat Mass Transf. 2011, 38, 943–950. [Google Scholar] [CrossRef]
- Schranner, F.S.; Domaradzki, J.A.; Hickel, S.; Adams, N.A. Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows. Comput. Fluids 2015, 114, 84–97. [Google Scholar] [CrossRef]
- Mahmoudnejad, N.; Hoffmann, K.A. Numerical Simulation of Wall-Pressure Fluctuations Due to a Turbulent Boundary Layer. J. Aircr. 2012, 49, 2046–2058. [Google Scholar] [CrossRef]
- Li, S.; Shen, C.; Sun, T.; Cheng, L.; Lei, S.; Xia, C.; Zhang, C. Numerical Simulation Analysis on Hydraulic Optimization of the Integrated Pump Gate. Energies 2022, 15, 4664. [Google Scholar] [CrossRef]
- Zhang, S.; Li, H.; Zhang, T.; Pang, Y.; Chen, Q. Numerical Simulation Study on the Effects of Course Keeping on the Roll Stability of Submarine Emergency Rising. Appl. Sci. 2019, 9, 3285. [Google Scholar] [CrossRef]
- Liu, G.; Hu, J.; Liu, L.; Sun, Q.; Wu, W. Investigating Deformation Mechanism of Earth-Rock Dams with InSaR and Numerical Simulation: Application to Liuduzhai Reservoir Dam, China. Remote Sens. 2023, 15, 4110. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.Q.; Wang, T.T.; Wang, M.; Zhao, H.D.; Li, S.T. Numerical analysis and experimental verification of static and dynamic stress of exposed radial gate. People’s Yellow River 2023, 45, 151–155+160. (In Chinese) [Google Scholar]
- Jafari, A.; Kabiri-Samani, A.; Behnamfar, F. Flow-induced horizontal and vertical vibration of sluice gates. Water Manag. 2016, 171, 152–162. [Google Scholar] [CrossRef]
- Oh, L.S.; Hoje, S.; Won, K.J. Flow-induced vibration of a radial gate at various opening heights. Eng. Appl. Comput. Fluid Mech. 2018, 12, 567–583. [Google Scholar]
- Ng, F.C.; Abas, A.; Abustan, I.; Rozainy, Z.M.R.; Abdullah, M.Z.; Kon, S.M. Fluid/structure interaction study on the variation of radial gate’s gap height in dam. IOP Conf. Ser. Mater. Sci. Eng. 2018, 370, 012063. [Google Scholar] [CrossRef]
- Shen, C.; Wang, W.; He, S.; Xu, Y. Numerical and Experimental Comparative Study on the Flow-Induced Vibration of a Plane Gate. Water 2018, 10, 1551. [Google Scholar] [CrossRef]
- Yilmaz, G.; Akcamete, A.; Demirors, O. BIM-CAREM: Assessing the BIM capabilities of design, construction and facilities management processes in the construction industry. Comput. Ind. 2023, 147, 103861. [Google Scholar] [CrossRef]
- Chen, J. 3D Tiles-Based High-Efficiency Visualization Method for Complex BIM Models on the Web. ISPRS Int. J. Geo-Inf. 2021, 10, 476. [Google Scholar]
- Nour El-Din, M.; Pereira, P.F.; Poças Martins, J.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard Specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Liu, Z.; Li, Y.; Lu, X.; Zhang, H. BIM-based integrated information framework for architectural and structural design model. Tongji Daxue Xuebao/J. Tongji Univ. 2010, 38, 948–953. [Google Scholar]
- Kent, M.; Huynh, N.K.; Schiavon, S.; Selkowitz, S. Using support vector machine to detect desk illuminance sensor blockage for closed-loop daylight harvesting. Energy Build. 2022, 274, 112443. [Google Scholar] [CrossRef]
- Liu, S.; Xie, B.; Tivendal, L.; Liu, C. The Driving Force of Government in Promoting BIM Implementation. J. Manag. Sustain. 2015, 5, 157. [Google Scholar] [CrossRef]
- Jia, J.; Gao, J.; Wang, W.; Ma, L.; Li, J.; Zhang, Z. An Automatic Generation Method of Finite Element Model Based on BIM and Ontology. Buildings 2022, 12, 1949. [Google Scholar] [CrossRef]
- He, X.P.; Wang, H.; Zhang, Y.M.; Wang, F.Q.; Mao, J.X.; Xie, Y.S. Transformation method and application of Revit-Midas/Civil model. J. Southeast Univ. (Nat. Sci. Ed.) 2021, 51, 813–818. (In Chinese) [Google Scholar]
- Zhang, X.Y.; Qu, Q.L.; Liang, D.; Liu, T.C. Endowing BIM Model with Mechanical Properties—Finite Element Simulation Analysis of Long-Span Corrugated Steel Web Continuous Beam Bridge. J. Phys. Conf. Ser. 2022, 2215, 012006. [Google Scholar] [CrossRef]
- Wad, M.F.; Koris, K.; Salamak, M.; Gerges, M.; Bednarski, L.; Sienko, R. Automation of structural health monitoring (SHM) system of a bridge using BIMification approach and BIM-based finite element model development. Sci. Rep. 2023, 13, 13215. [Google Scholar]
- Tang, F.; Ma, T.; Guan, Y.; Zhang, Z. Parametric modeling and structure verification of asphalt pavement based on BIM-ABAQUS. Autom. Constr. 2020, 111, 103066.1–103066.10. [Google Scholar] [CrossRef]
- Kim, S.H.; Yamashiro, M.; Yoshida, A. A simple two-way coupling method of BEM and VOF model for random wave calculations. Coast. Eng. 2010, 57, 1018–1028. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, D.Y.; Ou, C.Q. Simulation of Flow Transients in a Water Filling Pipe Containing Entrapped Air Pocket with VOF Model. Eng. Appl. Comput. Fluid Mech. 2011, 5, 127–140. [Google Scholar] [CrossRef]
- Ullah, A.; Amanat, A.; Imran, M.; Gillani, S.S.J.; Kilic, M.; Khan, A. Effect of Turbulence Modeling on Hydrodynamics of a Turbulent Contact Absorber. Chem. Eng. Process. 2020, 156, 108101. [Google Scholar] [CrossRef]
- Liu, S.; Wu, Y.; Wu, X.; Nishi, M. Optimization of a Francis Turbine Through Flow Simulation with a RNG k-ε Turbulence Model. Int. J. Turbo Jet Engines 2011, 28, 53–58. [Google Scholar] [CrossRef]
- Liao, H.; Wang, Y.; Li, Y.; Wang, K.; Deng, Y.; Su, M.; Qiu, S. 3D fluid-solid coupling simulation for plate-type nuclear fuel assemblies under the irradiation condition. Prog. Nucl. Energy 2020, 126, 103428. [Google Scholar] [CrossRef]
- Hu, G. A Dynamic Modeling Method for the Bi-Directional Pneumatic Actuator Using Dynamic Equilibrium Equation. Actuators 2021, 11, 7. [Google Scholar]
- Fatahi-Vajari, A.; Azimzadeh, Z.; Hussain, M. Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method. Micro Nano Lett. 2019, 14, 1366–1371. [Google Scholar] [CrossRef]
- Ding, W.T.; Xu, W.J. Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method. Powder Technol. 2018, 335, 301–314. [Google Scholar] [CrossRef]
- Sun, S.; Liu, X.; Zhang, R.; Liu, C.; Wang, A. Numerical Simulation and Analysis of Hydraulic Turbines Based on BIM for Sustainable Development. Sustainability 2023, 15, 16168. [Google Scholar] [CrossRef]
- Zhao, X.H.; Li, Z.Q.; Yuan, Y.C. Connection technology between solid element and shell element in finite element modeling of hull structure. Shipbuild. Eng. 2021, 43, 107–115. (In Chinese) [Google Scholar]
- Schillinger, D.; Gangwar, T.; Gilmanov, A.; Heuschele, J.D.; Stolarski, H.K. Embedded shell finite elements: Solid–shell interaction, surface locking, and application to image-based bio-structures. Comput. Methods Appl. Mech. Eng. 2018, 335, 298–326. [Google Scholar] [CrossRef]
- Tavares, R.P.; Bouwman, V.; Van Paepegem, W. Finite element analysis of wind turbine blades subjected to torsional loads: Shell vs. solid elements. Compos. Struct. 2022, 280, 114905. [Google Scholar] [CrossRef]
- Zadkhast, P.; Lin, X.; Howell, F.; Ko, B.; Hur, K. Practical challenges in hybrid simulation studies interfacing transient stability and electro-magnetic transient simulations. Electr. Power Syst. Res. 2021, 190, 106596. [Google Scholar] [CrossRef]
- Gillebaart, T.; Blom, D.S.; van Zuijlen, A.H.; Bijl, H. Time consistent fluid structure interaction on collocated grids for incompressible flow. Comput. Methods Appl. Mech. Eng. 2016, 298, 159–182. [Google Scholar] [CrossRef]
- Zhao, Z.X.; He, J.J. Hydraulics Course; Tinghua University Press: Beijing, China, 2010; pp. 47–49. [Google Scholar]
- People’s Republic of China (PRC) Ministry of Water Resources. Code for Design of Steel Sluices in Water Conservancy and Hydropower Projects: SL 74-2019; China Water Conservancy and Hydropower Press: Beijing, China, 2019. [Google Scholar]
- People’s Republic of China (PRC) Ministry of Electric Power Industry. Code for Design of Steel Sluices in Water Conservancy and Hydropower Projects: DL/T 5039-95; China Water Conservancy and Hydropower Press: Beijing, China, 2013. [Google Scholar]
- Kenichiro, Y.; Francois, B. Stiff bioinspired architectured beams bend Saint-Venant’s principle and generate large shape morphing. Int. J. Solids Struct. 2023, 274, 112270. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, S.; Zhang, R.; Liu, X.; Liu, C.; Wang, A. Numerical Simulation and Application of Radial Steel Gate Structure Based on Building Information Modeling under Different Opening Degrees. Water 2024, 16, 636. https://doi.org/10.3390/w16050636
Sun S, Zhang R, Liu X, Liu C, Wang A. Numerical Simulation and Application of Radial Steel Gate Structure Based on Building Information Modeling under Different Opening Degrees. Water. 2024; 16(5):636. https://doi.org/10.3390/w16050636
Chicago/Turabian StyleSun, Shaonan, Ruijie Zhang, Xiaojie Liu, Chunlu Liu, and Ailing Wang. 2024. "Numerical Simulation and Application of Radial Steel Gate Structure Based on Building Information Modeling under Different Opening Degrees" Water 16, no. 5: 636. https://doi.org/10.3390/w16050636
APA StyleSun, S., Zhang, R., Liu, X., Liu, C., & Wang, A. (2024). Numerical Simulation and Application of Radial Steel Gate Structure Based on Building Information Modeling under Different Opening Degrees. Water, 16(5), 636. https://doi.org/10.3390/w16050636