Enhancing Efficiency and Selectivity of Nitrate Reduction Toward Nitrogen Gas in an Open-Air UV/Fe(III)–Oxalate System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Photochemical Experiments
2.3. Analytical Methods
3. Results and Discussion
3.1. NO3− Removal in Different Systems
3.2. Identification of Main Radicals
3.3. NO3− Reduction and Selectivity Under Various Factors
3.3.1. Fe(III) Concentration
3.3.2. Oxalate Concentration
3.3.3. Initial pH
3.4. Mechanisms of NO3− Reduction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tugaoen, H.O.; Garcia-Segura, S.; Hristovski, K.; Westerhoff, P. Challenges in photocatalytic reduction of nitrate as a water treatment technology. Sci. Total Environ. 2017, 599–600, 1524–1551. [Google Scholar] [CrossRef]
- Karthikeyan, P.; Meenakshi, S. Enhanced removal of phosphate and nitrate ions by a novel Zn Fe LDHs-activated carbon composite. Sustain. Mater. Technol. 2020, 25, e00154. [Google Scholar] [CrossRef]
- Song, N.; Xu, J.; Cao, Y.; Xia, F.; Zhai, J.; Ai, H.; Shi, D.; Gu, L.; He, Q. Chemical removal and selectivity reduction of nitrate from water by (nano) zero-valent iron/activated carbon micro-electrolysis. Chemosphere 2020, 248, 125986. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Li, Y.; Zhang, C.; Wang, Y.; Zhang, W.; Wang, L.; Niu, L.; Wang, P.; Wang, C. Intimately coupled TiO2/g-C3N4 photocatalysts and in-situ cultivated biofilms enhanced nitrate reduction in water. Appl. Surf. Sci. 2020, 503, 144092. [Google Scholar] [CrossRef]
- Follett, R.F.; Hatfield, J.L. Nitrogen in the environment: Sources, problems, and management. Sci. World J. 2001, 1, 920–926. [Google Scholar] [CrossRef]
- Doudrick, K.; Yang, T.; Hristovski, K.; Westerhoff, P. Photocatalytic nitrate reduction in water: Managing the hole scavenger and reaction by-product selectivity. Appl. Catal. B-Environ. 2013, 136–137, 40–47. [Google Scholar] [CrossRef]
- Shrimali, M.; Singh, K.P. New metods of nitrate removal from water. Environ. Pollut. 2001, 112, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Pulkka, S.; Martikainen, M.; Bhatnagar, A.; Sillanpää, M. Electrochemical methods for the removal of anionic contaminants from water-A review. Sep. Purif. Technol. 2014, 132, 252–271. [Google Scholar] [CrossRef]
- Martínez, J.; Ortiz, A.; Ortiz, I. State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates. Appl. Catal. B-Environ. 2017, 207, 42–59. [Google Scholar] [CrossRef]
- Adamu, H.; McCue, A.J.; Taylor, R.S.F.; Manyar, H.G.; Anderson, J.A. Simultaneous photocatalytic removal of nitrate and oxalic acid over Cu2O/TiO2 and Cu2O/TiO2-AC composites. Appl. Catal. B-Environ. 2017, 217, 181–191. [Google Scholar] [CrossRef]
- Fanning, J.C. The chemical reduction of nitrate in aqueous solution. Coord. Chem. Rev. 2000, 199, 159–179. [Google Scholar] [CrossRef]
- Hao, S.Z.; Zhang, H.Z. High catalytic performance of nitrate reductioin by synergistic effect of zero-valent iron and bimetallic composite carrier catalyst. J. Clean. Prod. 2007, 167, 192–200. [Google Scholar] [CrossRef]
- Chen, J.L.; Liu, J.Y.; Zhou, J.S.; Chen, D. Reductive removal of nitrate by carbon dioxide radical with high product selectivity to form N2 in a UV/H2O2/HCOOH system. J. Water Process Eng. 2020, 33, 101097. [Google Scholar] [CrossRef]
- Jiang, W.C.; Tang, P.; Lu, S.G.; Xue, Y.F.; Zhang, X.; Qiu, Z.F.; Sui, Q. Comparative studies of H2O2/Fe(II)/formic acid, sodium percarbonate/Fe(II)/formic acid and calcium peroxide/Fe(II)/formic acid processes for degradation performance of carbon tetrachloride. Chem. Eng. J. 2018, 344, 453–461. [Google Scholar] [CrossRef]
- Jiang, W.; Tang, P.; Lu, S.; Zhang, X.; Qiu, Z.; Su, Q. Enhanced reductive degradation of carbon tetrachloride by carbon dioxide radical anion-based sodium percarbonate/Fe(II)/formic acid system in aqueous solution. Front. Environ. Sci. Eng. 2018, 12, 6. [Google Scholar] [CrossRef]
- Azqandi, M.; Nateq, K.; Golrizkhatami, F.; Nasseh, N.; Seyedi, N.; Sadat, N.; Moghaddam, M.; Fanaei, F. InnovationInnovative RGO-bridged S-scheme CuFe2O4@Ag2S heterojunction for efficient Sun-light-driven photocatalytic disintegration of Ciprofloxacin. Carbon 2025, 231, 119725. [Google Scholar] [CrossRef]
- Ren, H.; Hou, Z.; Han, X.; Zhou, R. Highly reductive radical CO2− deriving from a system with SO4·− and formate anion: Implication for reduction of Cr(VI) from wastewater. Chem. Eng. J. 2017, 309, 638–645. [Google Scholar] [CrossRef]
- Gu, X.; Lu, S.; Fu, X.; Qiu, Z.; Sui, Q.; Guo, X. Carbon dioxide radical anion-based UV/S2O82−/HCOOH reductive process for carbon tetrachloride degradation in aqueous solution. Sep. Purif. Technol. 2017, 172, 211–216. [Google Scholar] [CrossRef]
- Perissinotti, L.L.; Brusa, M.A.; Grela, M.A. Yield of Carboxyl Anion Radicals in the Photocatalytic Degradation of Formate over TiO2 Particles. Langmuir 2001, 17, 8422–8427. [Google Scholar] [CrossRef]
- Mangiante, D.M.; SchPiotr, R.D.; Zarzycki, P.; Banfield, J.F.; Gilbert, B. Mechanism of Ferric oxalate photolysis. Earth Space Chem. 2017, 1, 270–276. [Google Scholar] [CrossRef]
- Qiu, H.; Geng, J.; Shen, C.; Ren, H.; Xu, Z. Aquatic photooxidation of phosphite in the presence of ferric and oxalate ions. Chem. Eng. J. 2015, 269, 408–415. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, F.; Lin, Y.; Deng, N.; Bazhin, N.; Glebov, E. Photodegradation of glyphosate in the ferrioxalate system. J. Hazard Mater. 2007, 148, 360–365. [Google Scholar] [CrossRef]
- Zhou, T.; Lim, T.T.; Wu, X. Sonophotolytic degradation of azo dye reactive black 5 in an ultrasound/UV/ferric system and the roles of different organic ligands. Water Res. 2011, 45, 2915–2924. [Google Scholar] [CrossRef] [PubMed]
- Hug, S.J.; Laubscher, H.U.; James, B.R. Iron catalyzed photochemical reduction of chromium by oxalate and citrate in aqueous solutions. Environ. Sci. Technol. 1997, 31, 160–170. [Google Scholar] [CrossRef]
- Feng, X.H.; Ding, S.; Ran, H.B. Simultaneous reduction of hexavalent chromium and degradation of bisphenol A induced by the photolysis of ferric-oxalate complexes. Fresen Environ. Bull. 2013, 22, 1845–1851. [Google Scholar]
- Ababneh, F.A.; Scott, S.L.; Al-Reasi, H.A.; Lean, D.R.S. Photochemical reduction and reoxidation of aqueous mercuric chloride in the presence of ferrioxalate and air. Sci. Total Environ. 2006, 367, 831–839. [Google Scholar] [CrossRef]
- Huston, P.L.; Pignatello, J.J. Reduction of Perchloroalkanes by Ferrioxalate-Generated Carboxylate Radical Preceding Mineralization by the Photo-Fenton Reaction. Environ. Sci. Technol. 1996, 30, 3457–3463. [Google Scholar] [CrossRef]
- Chen, J.L.; Zhang, R.N.; Chen, D.; Liu, J.Y.; Chen, S.P. Carbon dioxide radical reducing nitrate to nitrogen gas in a UV/Fe(III)-oxalate system. J. Water Process Eng. 2021, 40, 101934. [Google Scholar] [CrossRef]
- Lin, C.H.; Yu, R.F.; Cheng, W.P.; Liu, C.R. Monitoring and control of UV and UV-TiO2 disinfections for municipal wastewater reclamation using artificial neural networks. J. Hazard. Mater. 2012, 209–210, 348–354. [Google Scholar] [CrossRef]
- Wu, H.; Wang, S. Impacts of operating parameters on oxidation-reduction potential and pretreatment efficacy in the pretreatment of printing and dyeing wastewater by Fenton process. J. Hazard. Mater. 2012, 243, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Molamahmood, H.V.; Geng, W.; Wei, Y.; Miao, J.; Yua, S.Q.; Shahi, A.; Chen, C.; Long, M.C. Catalyzed H2O2 decomposition over iron oxides and oxyhydroxides: Insights from oxygen production and organic degradation. Chemosphere 2022, 292, 133037. [Google Scholar] [CrossRef] [PubMed]
- Adhikamsetty, R.K.; Gollapalli, N.R.; Jonnalagadda, S.B. Complexation kinetics of Fe2+ with 1,10-phenanthroline forming ferroin in acidic solutions. Int. J. Chem. Kinet. 2008, 40, 515–523. [Google Scholar] [CrossRef]
- Adewuyi, Y.G.; Sakyi, N.Y.; Arif Khan, M. Simultaneous removal of NO and SO2 from flue gas by combined heat and Fe2+ activated aqueous persulfate solutions. Chemosphere 2018, 193, 1216–1225. [Google Scholar] [CrossRef] [PubMed]
- Watt, G.W.; Chrisp, J.D. Spectrophotometric Method for Determination of Hydrazine. Anal. Chem. 1952, 24, 2006–2008. [Google Scholar] [CrossRef]
- Pretzer, L.A.; Carlson, P.J.; Boyd, J.E. The effect of Pt oxidation state and concentration on the photocatalytic removal of aqueous ammonia with Pt-modified titania. J. Photoch Photobio A Chem. 2008, 200, 246–253. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, Q.C.; Xu, C.X.; Fu, Y.; Tang, Y.; Wang, P.; Zhang, Z.; Xia, Y.Q.; Liu, X.J.; Cao, J.H.; et al. Phosphate-Mediated Degradation of Organic Pollutants in Water with Peroxymonisulfate Revisited: Radical or Non-radical Oxidation? Water Res. 2024, 255, 12159. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.H.; He, M.C. Mechanisms of Sb(III) Photooxidation by the Excitation of Organic Fe(III) Complexes. Environ. Sci. Technol. 2016, 50, 6974–6982. [Google Scholar] [CrossRef]
- Wang, C.; Yan, R.; Cai, M.; Liu, Y.; Li, S. A novel organic/inorganic S-scheme heterostructure of TCPP/Bi12O17Cl2 for boosting photodegradation of tetracycline hydrochloride: Kinetic, degradation mechanism, and toxic assessment. Appl. Surf. Sci. 2023, 610, 155346. [Google Scholar] [CrossRef]
- Cai, M.; Liu, Y.; Wang, C.; Lin, W.; Li, S. Novel Cd0.5Zn0.5S/Bi2MoO6 S-scheme heterojunction for boosting the photodegradation of antibiotic enrofloxacin: Degradation pathway, mechanism and toxicity assessment. Sep. Purif. Technol. 2023, 304, 122401. [Google Scholar] [CrossRef]
- Liu, X.W.; Zhong, J.; Fang, L.; Wang, L.L.; Ye, M.M.; Shao, Y.; Li, J.; Zhang, T.Q. Trichloroacetic acid reduction by an advanced reduction process based on carboxyl anion radical. Chem. Eng. J. 2016, 303, 56–63. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, D.; Liu, J. Diverse redox chemistry of photo/ferrioxalate system. RSC Adv. 2014, 4, 44654–44658. [Google Scholar] [CrossRef]
- Pozdnyakov, I.; Sherin, P.; Bazhin, N.; Plyusnin, V. [Fe(Ox)3]3- complex as a photodegradation agent at neutral pH: Advances and limitations. Chemosphere 2018, 195, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.C.; Dong, Y.C.; Li, B.; Li, F. Comparative study of three solid oxidants as substitutes of H2O2 used in Fe-oxalate complex mediated Fenton system for photocatalytic elimination of reactive azo dye. J. Clean. Prod. 2018, 177, 245–253. [Google Scholar] [CrossRef]
- Dong, Y.; He, L.; Wang, Q.; Yang, M.; Qi, R.; Li, K. Effect of inorganic salts on ferric oxalate-induced decomposition of Cl Acid Black 234 under different weather conditions. Color. Technol. 2008, 124, 19–26. [Google Scholar] [CrossRef]
- Deng, J.; Shao, Y.; Gao, N.; Xia, S.; Tan, C.; Zhou, S.; Hu, X. Degradation of the antiepileptic drug carbamazepine upon different UV-based advanced oxidation processes in water. Chem. Eng. J. 2013, 222, 150–158. [Google Scholar] [CrossRef]
- Liao, C.H.; Kang, S.F.; Wu, F.A. Hydroxyl radical scavenging role of chloride and bicarbonate ions in the H2O2-UV process. Chemosphere 2001, 44, 1193–1200. [Google Scholar] [CrossRef]
- Haynes, W.M. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Shi, Z.Y.; Wang, F.L.; Xiao, Q.; Yu, S.L.; Ji, X.L. Selectivity and efficient reducition of nitrate to gaseous nitrogen from drinking water source by UV/Oxalic Acid/Ferric Iron Systems: Effectivenes and Mechamisms. Catalysis 2022, 12, 348. [Google Scholar]
- Nogueira, A.A.; Souza, B.M.; Dezotti, M.W.C.; Boaventura, R.A.R.; Vilar, V.J.P. Ferrioxalate complexes as strategy to drive a photo-fenton reaction at mild pH conditions a case study on levofloxacin oxidation. J. Photoch Photobio A. 2017, 345, 109–123. [Google Scholar] [CrossRef]
- Lowson, R.T. Aqueous Oxidation of Pyrite by Molecular Oxygen. Chem. Rev. 1982, 82, 461–497. [Google Scholar] [CrossRef]
- Ardo, S.G.; Nelieu, S.; Ona-Nguema, G.; Delarue, G.; Brest, J.; Pironin, E.; Morin, G. Oxidative degradation of nalidixic acid by nano-magnetite via Fe2+/O2-mediated reactions. Environ. Sci. Technol. 2015, 49, 4506–4514. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Yoon, J. pH effect on OH radical production in photo/ferrioxalate system. Water Res. 2005, 39, 2893–2900. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Yoon, J. Dual roles of ·CO2− for degrading synthetic organic chemicals in the photo/ferrioxalate system. Water Res. 2004, 38, 3531–3540. [Google Scholar] [CrossRef] [PubMed]
Operational Parameters | Removal | Selectivity | |||||
---|---|---|---|---|---|---|---|
Fe(III) mM | Oxalate mM | pH | NO3− mg N/L | NO3− % | NO2− % | NH4+ % | N2 % |
0.5 | 10 | 3 | 14 | 91.86 | 2.70 | 34.63 | 62.67 |
1 | 10 | 3 | 14 | 88.71 | 4.30 | 45.36 | 50.34 |
2 | 10 | 3 | 14 | 91.95 | 1.45 | 80.10 | 18.45 |
1 | 1 | 3 | 14 | 31.06 | 76.50 | 0 | 23.5 |
1 | 3 | 3 | 14 | 90.23 | 12.47 | 17.75 | 69.78 |
1 | 10 | 2 | 14 | 79.62 | 2.93 | 21.05 | 76.02 |
1 | 10 | 4 | 14 | 91.35 | 3.65 | 67.31 | 29.04 |
1 | 10 | 5 | 14 | 90.35 | 1.37 | 72.97 | 25.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Xie, Y.; Xia, J.; Zhang, X.; Chen, D. Enhancing Efficiency and Selectivity of Nitrate Reduction Toward Nitrogen Gas in an Open-Air UV/Fe(III)–Oxalate System. Water 2024, 16, 3658. https://doi.org/10.3390/w16243658
Chen J, Xie Y, Xia J, Zhang X, Chen D. Enhancing Efficiency and Selectivity of Nitrate Reduction Toward Nitrogen Gas in an Open-Air UV/Fe(III)–Oxalate System. Water. 2024; 16(24):3658. https://doi.org/10.3390/w16243658
Chicago/Turabian StyleChen, Jialin, Yi Xie, Jun Xia, Xiaolin Zhang, and Dong Chen. 2024. "Enhancing Efficiency and Selectivity of Nitrate Reduction Toward Nitrogen Gas in an Open-Air UV/Fe(III)–Oxalate System" Water 16, no. 24: 3658. https://doi.org/10.3390/w16243658
APA StyleChen, J., Xie, Y., Xia, J., Zhang, X., & Chen, D. (2024). Enhancing Efficiency and Selectivity of Nitrate Reduction Toward Nitrogen Gas in an Open-Air UV/Fe(III)–Oxalate System. Water, 16(24), 3658. https://doi.org/10.3390/w16243658