Environmental Risk Assessment of Reclaimed Water Purification Using an Agent Prepared from Waste Acid Resulting from Titanium Dioxide Industry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Methods and Quality Control
2.2.1. Experimental Methods
2.2.2. Quality Control
2.3. Risk Assessment Model
3. Results and Discussion
3.1. Identification and Analysis of Pollution Characteristics of Waste Acid and Ferrous Sulfate
3.2. Analysis of Product Quality and Pollution Characteristics of Reclaimed Water Purification Agent
3.3. Environmental Impact and Risk Analysis of Recycled Water Purifiers
3.3.1. Analysis of the Impact of Reclaimed Water Purifiers on the Effluent Quality
3.3.2. Human Health Risk Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Middlemas, S.; Fang, Z.Z.; Fan, P. Life Cycle Assessment Comparison of Emerging and Traditional Titanium Dioxide Manufacturing Processes. J. Clean. Prod. 2015, 89, 137–147. [Google Scholar] [CrossRef]
- Cao, X.; Chen, Y.; Liang, X.; Li, Y.; Zhang, W.; Cai, Z.; Zhang, T. Basic Research on Selective Extraction of Iron from Titanium Dioxide Waste Acid to Prepare Iron Phosphate Precursors. Separations 2023, 10, 400. [Google Scholar] [CrossRef]
- Ge, H.; Rao, H.; Tian, C.; Ma, G.; Chen, Q.; Chen, X.; Hong, Y. Exploration and Practice of Cleaner Production of Titanium Dioxide by Sulfuric Acid Process. Ferroelectrics 2024, 618, 1811–1822. [Google Scholar] [CrossRef]
- Ma, G.; Cheng, M. Experimental Study on Preparation of Titanium-Rich Material by Pressure Leaching of Titanium Concentrate from Titanium Dioxide Waste Acid. Ferroelectrics 2021, 581, 281–286. [Google Scholar] [CrossRef]
- Pang, H.; Lu, R.; Zhang, T.; Lü, L.; Chen, Y.; Tang, S. Chemical Dehydration Coupling Multi-Effect Evaporation to Treat Waste Sulfuric Acid in Titanium Dioxide Production Process. Chin. J. Chem. Eng. 2020, 28, 1162–1170. [Google Scholar] [CrossRef]
- Xu, X.; Guo, Z.; Tian, X.; Zhu, D.; Pan, J.; Yang, C.; Li, S. Synergetic Recovery of Rutile and Preparation of Iron Phosphate from Titanium-Extraction Tailings by a Co-Leaching Process. Sep. Purif. Technol. 2024, 344, 127234. [Google Scholar] [CrossRef]
- Feng, E.; Gao, D.; Wang, Y.; Yu, F.; Wang, C.; Wen, J.; Gao, Y.; Huang, G.; Xu, S. Sustainable Recovery of Titanium from Secondary Resources: A Review. J. Environ. Manag. 2023, 339, 117818. [Google Scholar] [CrossRef] [PubMed]
- HJ 702-2014; Solid Waste Determination of Mercury, Arsenic, Selenium, Bismuth, Antimony-Microwave Dissolution Atomic Fluorescence Spectrometry. China Environmental Science Press: Beijing, China, 2014.
- HJ 781-2016; Solid Waste—Determination of 22 Metal Elements Inductively Coupled Plasma Optical Emission Spectrometry. China Environmental Science Press: Beijing, China, 2016.
- HJ/T 20-1998; Technical Specifications on Sampling and Sample Preparation from Industry Solid Waste. Ministry of Ecology and Environment: Beijing, China, 1998.
- HJ 25.3-2019; Technical Guidelines for Risk Assessment of Soil Contamination of Land for Construction. China Environmental Science Press: Beijing, China, 2019.
- Hossain, M.S.; Omar, F.; Asis, A.J.; Bachmann, R.T.; Sarker, M.Z.I.; Ab Kadir, M.O. Effective Treatment of Palm Oil Mill Effluent Using FeSO4.7H2O Waste from Titanium Oxide Industry: Coagulation Adsorption Isotherm and Kinetics Studies. J. Clean. Prod. 2019, 219, 86–98. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Moussas, P.A.; Vasilakou, F. Polyferric Sulphate: Preparation, Characterisation and Application in Coagulation Experiments. J. Hazard. Mater. 2008, 155, 459–468. [Google Scholar] [CrossRef] [PubMed]
- GB/T 534-2014; Sulphuric Acid for Industrial Use. National Standardization Administration: Beijing, China, 2014.
- Zhu, G.; Zheng, H.; Chen, W.; Fan, W.; Zhang, P.; Tshukudu, T. Preparation of a Composite Coagulant: Polymeric Aluminum Ferric Sulfate (PAFS) for Wastewater Treatment. Desalination 2012, 285, 315–323. [Google Scholar] [CrossRef]
- Agrawal, A.; Sahu, K.K. An Overview of the Recovery of Acid from Spent Acidic Solutions from Steel and Electroplating Industries. J. Hazard. Mater. 2009, 171, 61–75. [Google Scholar] [CrossRef] [PubMed]
- GB 8978-1996; Integrated Wastewater Discharge Standard. Ministry of Ecology and Environment: Beijing, China, 1996.
- GB/T 10531-2016; Water Treatment Chemicals-Ferrous Sulphate. National Standardization Administration: Beijing, China, 2016.
- GB 36600-2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land. Ministry of Ecology and Environment: Beijing, China, 2018.
- Han, Z.; Li, J.; Guan, W.; Cao, Z.; Li, Q.; Wang, M.; Wu, S.; Zhang, G. Complete Recovery of Valuable Metals from Chlorinated Titanium-White Waste Acids: Focus on Solvent Extraction for Recovery and Preparation of Battery-Grade Manganese Sulfate (MnSO4·H2O) from Lab to Pilot Scale. Chem. Eng. J. 2024, 491, 151766. [Google Scholar] [CrossRef]
- Li, X.; Lei, Z.; Qu, J.; Li, Z.; Zhou, X.; Zhang, Q. Synthesizing Slow-Release Fertilizers via Mechanochemical Processing for Potentially Recycling the Waste Ferrous Sulfate from Titanium Dioxide Production. J. Environ. Manag. 2017, 186, 120–126. [Google Scholar] [CrossRef]
- Zhou, Y.; Wu, L.; Li, Y.; Bai, J. Analysis of Synthesis Structures and Flocculation Stability of a Polyphosphate Ferric Sulfate Solid. Chem. Eng. J. Adv. 2022, 9, 100202. [Google Scholar] [CrossRef]
- GB/T 14591-2016; Water Treatment Chemicals-Poly Ferric Sulfate. Ministry of Ecology and Environment: Beijing, China, 2016.
- Jiang, Y.; Peng, C.; Zhou, K.; Hu, Z.; Zhang, G.; Wu, Y.; Zhang, J.; Chen, W. Recovery of Iron from Titanium White Waste for the Preparation of LiFePO4 Battery. J. Clean. Prod. 2023, 415, 137817. [Google Scholar] [CrossRef]
- HJ 1091-2020; Technical Guideline on Pollution Preventionand Control for Solid Wasterecycling. China Environmental Science Press: Beijing, China, 2020.
- Mwewa, B.; Stopić, S.; Ndlovu, S.; Simate, G.S.; Xakalashe, B.; Friedrich, B. Synthesis of Poly-Alumino-Ferric Sulphate Coagulant from Acid Mine Drainage by Precipitation. Metals 2019, 9, 1166. [Google Scholar] [CrossRef]
- Huang, P.; Jiang, B.; Zhang, Z.; Wang, X.; Chen, X.; Yang, X.; Yang, L. Recycling Sulfur and Iron Resources in the Waste Ferrous Sulfate: Mechanism and Kinetic Study of the Decomposition Reaction. J. Therm. Anal. Calorim. 2015, 119, 2229–2237. [Google Scholar] [CrossRef]
- Tzoupanos, N.D.; Zouboulis, A.I. Preparation, Characterisation and Application of Novel Composite Coagulants for Surface Water Treatment. Water Res. 2011, 45, 3614–3626. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Guo, F.; Zhu, H.; Wu, Y.; Guo, B.; Yang, J.; Wu, F. Risk Assessment and Impact Prediction of Associated Heavy Metal Pollution in Selenium-Rich Farmland. Sci. Total Environ. 2024, 950, 175321. [Google Scholar] [CrossRef] [PubMed]
- GB 30770-2014; Emission Standards of Pollutants for Stannum, Antimony and Mercury Industries. China Environmental Science Press: Beijing, China, 2014.
- GB 26452-2011; Discharge Standard of Pollutants for Vanadium Industry. China Environmental Science Press: Beijing, China, 2011.
- GB 25467-2010; Emission Standard of Pollutants for Copper, Nickel, Cobalt Industry. China Environmental Science Press: Beijing, China, 2010.
Waste Acid | FeSO4 | GB/T 534 [14] | GB 8978 [17] | GB/T 10531 [18] | GB 36600 [19] | |
---|---|---|---|---|---|---|
mg L−1 | mg kg−1 | % | mg L−1 | % | mg kg−1 | |
Ba | ND | 5~13.8 | - | - | - | - |
V | 162~168 | 22.2~30 | - | - | - | 752 |
Cd | ND | 0.6~0.9 | - | - | 0.0001 | - |
Hg | 0.00122~0.00191 | 0.022~0.037 | 0.01 | 0.05 | 0.00002 | - |
Co | 6.54~7.58 | 16.2~21.2 | - | - | - | 70 |
Cr | ND | 4.7~5.2 | - | - | 0.0010 | - |
Mn | 428~500 | 395~538 | - | 2 | - | - |
Ni | 10.6~13.3 | 17.9~19.8 | - | 1 | - | 900 |
Pb | 0.59~0.85 | 25.6~33 | 0.02 | 1 | 0.0004 | - |
As | 0.444~0.708 | 1.78~1.9 | 0.001 | 0.5 | 0.0002 | - |
Ti | 849~887 | 2840~4190 | - | - | - | - |
Sb | 0.0174~0.0308 | ND | - | - | - | - |
Cu | ND | ND | - | - | - | - |
Se | ND | ND | - | - | - | - |
Zn | 43.2~52.6 | 60.8~75.7 | - | 2 | - | - |
Hg | As | Zn | Pb | Ni | Cr | Ti | Co | Mn | V | Sb | |
---|---|---|---|---|---|---|---|---|---|---|---|
Minimum value | 0.000060 | 0.090 | 11.60 | 2.21 | 3.24 | 6.05 | 537.00 | 3.45 | 123.00 | 16.10 | 0.00154 |
Median value | 0.000060 | 0.103 | 12.50 | 2.28 | 3.50 | 6.95 | 605.50 | 3.77 | 140.00 | 19.05 | 0.00263 |
Mean value | 0.000068 | 0.100 | 12.64 | 2.30 | 3.54 | 7.03 | 600.10 | 3.74 | 138.40 | 19.15 | 0.00270 |
SD | 0.000010 | 0.005 | 0.81 | 0.08 | 0.23 | 0.66 | 27.57 | 0.16 | 11.42 | 1.96 | 0.00086 |
Maximum value | 0.000090 | 0.105 | 14.50 | 2.51 | 3.90 | 8.27 | 631.00 | 3.99 | 163.00 | 22.60 | 0.00478 |
Limits | 0.5 | 5 | 50 | 10 | 50 | 25 | - | - | - | - | - |
Concentration mg L−1 | Fluctuation Rates % | Emission Limits mg L−1 | Standards | |
---|---|---|---|---|
Sb | 0.00478 | 0.00159 | 0.3 | GB 30770-2014 [30] |
V | 22.6 | 2.26 | 1 | GB 26452-2011 [31] |
Co | 4.16 | 0.416 | 1 | GB 25467-2010 [32] |
Mn | 163 | 8.15 | 2 | GB 8978-1996 [17] |
RfDo (mg/kg-d) | HI | |||||
---|---|---|---|---|---|---|
Dermal | Ingestion | Dermal | Ingestion | |||
Sb | 0.0004 | 1.67 × 10−10 | 1.11 × 10−2 | 1.33 × 10−8 | 2.65 × 10−1 | 2.65 × 10−1 |
V | 0.009 | 1.67 × 10−10 | 1.11 × 10−2 | 1.61 × 10−5 | 5.57 × 101 | 5.57 × 101 |
Co | 0.0003 | 6.67 × 10−11 | 1.11 × 10−2 | 9.25 × 10−7 | 3.07 × 102 | 3.07 × 102 |
Mn | 0.14 | - | 1.11 × 10−2 | - | 2.58 × 101 | 2.58 × 101 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Hua, J.; Zhang, C.; Zhang, J.; Zhang, D.; Lv, Y.; Wang, Y.; Zhao, Z.; Yu, Q. Environmental Risk Assessment of Reclaimed Water Purification Using an Agent Prepared from Waste Acid Resulting from Titanium Dioxide Industry. Water 2024, 16, 3588. https://doi.org/10.3390/w16243588
Xu X, Hua J, Zhang C, Zhang J, Zhang D, Lv Y, Wang Y, Zhao Z, Yu Q. Environmental Risk Assessment of Reclaimed Water Purification Using an Agent Prepared from Waste Acid Resulting from Titanium Dioxide Industry. Water. 2024; 16(24):3588. https://doi.org/10.3390/w16243588
Chicago/Turabian StyleXu, Xiaowei, Jing Hua, Cheng Zhang, Jun Zhang, Dapeng Zhang, Yang Lv, Yi Wang, Zehua Zhao, and Qi Yu. 2024. "Environmental Risk Assessment of Reclaimed Water Purification Using an Agent Prepared from Waste Acid Resulting from Titanium Dioxide Industry" Water 16, no. 24: 3588. https://doi.org/10.3390/w16243588
APA StyleXu, X., Hua, J., Zhang, C., Zhang, J., Zhang, D., Lv, Y., Wang, Y., Zhao, Z., & Yu, Q. (2024). Environmental Risk Assessment of Reclaimed Water Purification Using an Agent Prepared from Waste Acid Resulting from Titanium Dioxide Industry. Water, 16(24), 3588. https://doi.org/10.3390/w16243588