A Study on the Maximum Scour Depth of River-Crossing Tunnels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Basic Information of the River Channel
2.1.2. The Composition of the Riverbed
2.2. Mathematical Equations
2.3. Data Source
3. Results
3.1. Model Validation
3.1.1. Model Debugging
3.1.2. Steady-Bed Model Validation
- Water level validation
- Velocity verification
3.1.3. Riverbed Operation Model Verification
- Verification of sedimentation and scouring distribution
- Verification of cross-sectional sedimentation and scouring
3.2. Test Conditions
3.3. Prediction of the Maximum Scouring Depth at the Tunnel Site Section
4. Discussion
4.1. Selection of Extreme Flood Frequency
4.2. Analysis of the Influence of Riverbed Particle Size on the Maximum Scour Depth
4.3. The Analysis of the Impact of Flow Conditions on the Riverbed’s Maximum Scour
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Zhang, X.; Cui, Y.; Qiu, H. Discrete Element Modeling of a Cross-River Tunnel under Subway Train Operation during Peak and off-Peak Periods. Arab. J. Geosci. 2019, 12, 102. [Google Scholar] [CrossRef]
- Xue, R.D.; Xiong, X.H.; Wang, K.W.; Jiao, Q.Z.; Li, X.B.; Dong, T.Y.; Wang, J.Y. Influence of Variable Cross-Section on Pressure Transients and Unsteady Slipstream in a Long Tunnel When High-Speed Train Passes Through. J. Cent. South Univ. 2023, 30, 1027–1046. [Google Scholar] [CrossRef]
- Jiang, B.; Xin, Z.; Deng, L.Y. Experimental and Numerical Study on the Bearing Behaviour of Confined Concrete Arch for a Traffic Tunnel. Int. J. Civ. Eng. 2024, 22, 113–124. [Google Scholar] [CrossRef]
- Di, D.; Li, T.; Fang, H.; Xiao, L.; Du, X.; Sun, B.; Zhang, J.; Wang, N.; Li, B. A CFD-DEM Investigation into Hydraulic Transport and Retardation Response Characteristics of Drainage Pipeline Siltation Using Intelligent Model. Tunn. Undergr. Space Technol. 2024, 152, 105964. [Google Scholar] [CrossRef]
- Wei, W.; Gong, J.; Deng, J.; Xu, W. Effects of Air Vent Size and Location Design on Air Supply Efficiency in Flood Discharge Tunnel Operations. J. Hydraul. Eng. 2023, 149, 04023050. Available online: https://ascelibrary.org/doi/10.1061/JHEND8.HYENG-13305 (accessed on 19 July 2024). [CrossRef]
- Li, X.; Sun, W.; Fu, H.; Bu, Q.; Zhang, Z.; Huang, J.; Zang, D.; Sun, Y.; Ma, Y.; Wang, R.; et al. Schedule Risk Model of Water Intake Tunnel Construction Considering Mood Factors and Its Application. Sci. Rep. 2024, 14, 3857. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Cao, C.; Lei, M. Construction Technology for a Shallow-Buried Underwater Interchange Tunnel with a Large Span. Tunn. Undergr. Space Technol. 2017, 70, 317–329. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, C.; Zhou, H.; Liu, N.; Dai, F. The Long-Term Safety of a Deeply Buried Soft Rock Tunnel Lining under inside-to-Outside Seepage Conditions. Tunn. Undergr. Space Technol. 2017, 67, 132–146. [Google Scholar] [CrossRef]
- Xu, J.; Huang, Y. Viscoelastic-Plastic Stability Analysis of Large-Section Quasi-Rectangular Pipe-Jacking Tunnel under-Passing Box Culvert. Environ. Earth Sci. 2024, 83, 50. [Google Scholar] [CrossRef]
- Wang, T.; Chen, J.; Wang, J.; Shi, F.; Zhang, L.; Qian, B.; Jiang, C.; Wang, J.; Wang, Y.; Yang, M. Three-Dimensional Characteristics of Pressure Waves Induced by High-Speed Trains Passing through Tunnels. Acta Mech. Sin. 2024, 40, 323261. [Google Scholar] [CrossRef]
- Chen, J.; Huang, A.F.; Chen, H.; Li, Y.T. Numerical simulation of maximum scour depth of the riverbed above a subway tunnel crossing the tidal river. Appl. Mech. Mater. 2013, 256, 2548–2551. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, C.; Cao, Y.; Yang, Y. Study of Scour Depth in River Reach of Qianjiang Tunnel across Qiantang Estuary. J. Sediment Res. 2011, 4, 51–58. (In Chinese) [Google Scholar]
- Huang, P.; Wang, H.; Wu, T. Study on Limit Scouring of Maliuzhou Waterway: A Case Study of the Cross Gate TunnelProject. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 330, p. 022123. [Google Scholar]
- Zhang, H.; Zhu, Y.; Gu, L. Experimental Study on the River Engineering Model of Tunnel across Yangtze River about Line No.8 of Track Traffic in Wuhan. In Proceedings of the Materials, Transportation and Environmental Engineering, PTS 1 and 2; Kao, J.C.M., Sung, W.P., Chen, R., Eds.; Trans Tech Publications Ltd: Dürnten, Switzerland; Zurich, Switzerland, 2013; Volume 779–780, pp. 572–577. [Google Scholar]
- Suntoyo; Perkasa, B.; Atikasari, T.J.; Wisudawan, A. Longitudinal Pipeline Scour Propagation Induced by Wave-Current Interaction For the South Sumatra-West Java Submarine Pipeline. IOP Conf. Ser. Earth Environ. Sci. 2018, 135, 012021. [Google Scholar] [CrossRef]
- Pandey, M.; Sharma, P.K.; Ahmad, Z.; Karna, N. Maximum Scour Depth around Bridge Pier in Gravel Bed Streams. Nat. Hazards 2018, 91, 819–836. [Google Scholar] [CrossRef]
- Abdelaziz, A.A.; Lim, S.-Y. Migration of Maximum Scour Location around Wide Setback Bridge Abutments in Floodplains. J. Irrig. Drain. Eng. 2021, 147, 04021038. [Google Scholar] [CrossRef]
- Mostaani, A.; Azimi, A.H. Analytical Approach for Predicting Local Scour Downstream of Submerged Sluice Gate with an Apron. Int. J. Sediment Res. 2022, 37, 522–537. [Google Scholar] [CrossRef]
- Khosronejad, A.; Diplas, P.; Angelidis, D.; Zhang, Z.; Heydari, N.; Sotiropoulos, F. Scour Depth Prediction at the Base of Longitudinal Walls: A Combined Experimental, Numerical, and Field Study. Environ. Fluid Mech. 2020, 20, 459–478. [Google Scholar] [CrossRef]
- Lai, J.-S.; Chang, W.-Y.; Yen, C.-L. Maximum Local Scour Depth at Bridge Piers under Unsteady Flow. J. Hydraul. Eng. 2009, 135, 609–614. [Google Scholar] [CrossRef]
- Lim, Y.H.; Cox, M.L. Enhancing Maximum Scour Depth Determination for Spur Dikes Using a Validated Two-Dimensional Model. In Proceedings of the World Environmental and Water Resources Congress 2020: Hydraulics, Waterways, and Water Distribution Systems Analysis; Ahmad, S., Murray, R., Eds.; American Society of Civil Engineers: New York, NY, USA, 2020; pp. 84–98. [Google Scholar]
- Stella, J.M. Modeling Alex Hurricane: Flood Map Simulation Applying Multisensor Grid Precipitation, Monterrey, Mexico. Rev. Ambiente Água 2023, 18, e2911. [Google Scholar] [CrossRef]
- Rifo, C.; Arriagada, P.; Ettmer, B.; Link, O. Frequency Analysis of Extreme Scour Depths at Bridge Piers and Their Contribution to Bridge Collapse Risk. Hydrol. Sci. J. 2022, 67, 2029–2041. [Google Scholar] [CrossRef]
- Burge, L.M.; Chaput-Desrochers, L.; Guthrie, R. Practical Applications of Bed Scour Calculations: Two Case Studies. In International Pipeline Conference; American Society of Mechanical Engineers: New York, NY, USA, 2014. [Google Scholar]
- Saha, R.; Lee, S.O.; Hong, S.H. A Comprehensive Method of Calculating Maximum Bridge Scour Depth. Water 2018, 10, 1572. [Google Scholar] [CrossRef]
- Melville, B.W.; Raudkivi, A.J. Effects of Foundation Geometry on Bridge Pier Scour. J. Hydraul. Eng. 1996, 122, 203–209. [Google Scholar] [CrossRef]
- Wu, P.; Hirshfield, F.; Sui, J.; Wang, J.; Chen, P. Impacts of Ice Cover on Local Scour around Semi-Circular Bridge Abutment. J. Hydrodyn. 2014, 26, 10–18. [Google Scholar] [CrossRef]
- Physics of Flow, Sediment Transport, Hydraulic Geometry, and Channel Geomorphic Adjustment during Flash Floods in an Ephemeral River, the Paria River, Utah and Arizona-All Databases. Available online: https://webofscience.clarivate.cn/wos/alldb/full-record/PQDT:64484515 (accessed on 8 June 2024).
- Bressan, F.; Mantilla, R.; Schilling, K.E.; Palmer, J.A.; Weber, L. Hydrologic-Hydraulic Modeling of Sediment Transport along the Main Stem of a Watershed: Role of Tributaries and Channel Geometry. Hydrol. Sci. J. 2020, 65, 183–199. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, L.; Chen, S.; Huang, T.; Chen, L.; Wang, D.; Dai, M.; Zhang, D. Impoundment Impact of the Three Gorge Reservoir on the Hydrological Regime in the Lower Han River, China. Water 2018, 10, 1670. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, L.; Chen, L.; Wang, D.; Dai, M.; Xu, W.; Yan, T. Water Compensation and Its Implication of the Three Gorges Reservoir for the River-Lake System in the Middle Yangtze River, China. Water 2018, 10, 1011. [Google Scholar] [CrossRef]
- Roelvink, D.; Reniers, A. A Guide to Modeling Coastal Morphology; World Scientific: Singapore, 2011. [Google Scholar]
- Uchida, T.; Kawahara, Y.; Hayashi, Y.; Tateishi, A. Eulerian Deposition Model for Sediment Mixture in Gravel-Bed Rivers with Broad Particle Size Distributions. J. Hydraul. Eng. 2020, 146, 04020071. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, M.; Zhong, Z.; Du, X. Optimum Intensity Measures for Probabilistic Seismic Demand Model of Subway Stations with Different Burial Depths. Soil Dyn. Earthq. Eng. 2022, 154, 107138. [Google Scholar] [CrossRef]
- Influence of Subway Burial Depth on Dynamic Response of Train-All Databases. Available online: https://en.cnki.com.cn/Article_en/CJFDTOTAL-ZDCJ200603013.htm (accessed on 8 June 2024).
- Wang, J.; Kong, X.; Rahim, A.; Xia, F.; Tolba, A.; Al-Makhadmeh, Z. IS2Fun: Identification of Subway Station Functions Using Massive Urban Data. IEEE Access 2017, 5, 27103–27113. [Google Scholar] [CrossRef]
- Kusakabe, T. Study on the Measurement and Indication Method of Sediment Discharge Taking Account of Particle Size. In Proceedings of the Ninth International Symposium on River Sedimentation, Vols 1-4; Hu, C., Tan, Y., Zhou, Z., Shao, X., Liu, C., Eds.; Tsinghua University Press: Beijing, China, 2004; pp. 2583–2590. [Google Scholar]
- Numerical Study on the Influence of Riverbed Median Particle Size onScour Pit Evolution Process around Bridge Pier-All Databases. Available online: https://link.cnki.net/urlid/42.1171.TV.20210805.0913.006 (accessed on 8 June 2024).
- Choi, G.W.; Ahn, S.J. Maximum Local Scour Depth Variation at Bridge Piers. In Proceedings of the Hydraulics of Rivers Water Works and Machinery, Vol II, Theme D, Proceedings: 21st Century: The New Era for Hydraulic Research And Its Applications; Li, G., Ed.; Tsinghua University Press: Beijing, China, 2001; pp. 357–361. [Google Scholar]
- Kokpinar, M.A.; Kucukali, S. Effect of Particle Size on Flip Bucket Scour. Can. J. Civ. Eng. 2016, 43, 759–768. [Google Scholar] [CrossRef]
- Experimental Study on the Hydraulic Characteristics of the Two-Stage Energy Dissipation in Low Froude Number Flow-All Databases. Available online: https://iahrapd2020.xsrv.jp/proceedings/pdf/1-1-20.pdf (accessed on 8 June 2024).
- River Patterns Based on Area Type Froude Number and Channel Scale of Maximum Sediment Transport Flow in the Yellow River-All Databases. Available online: https://link.cnki.net/doi/10.16239/j.cnki.0468-155x.2019.02.002 (accessed on 8 June 2024).
- Park, S.W.; Hwang, J.H.; Ahn, J. Physical Modeling of Spatial and Temporal Development of Local Scour at the Downstream of Bed Protection for Low Froude Number. Water 2019, 11, 1041. [Google Scholar] [CrossRef]
Cross-Section Number | Cross-Section | 13 October 2021 | ||
---|---|---|---|---|
Observed (m) | Simulated (m) | Difference (m) | ||
DM1 | Upstream500 m | 67.73 | 67.75 | 0.02 |
DM2 | Upstream400 m | 67.71 | 67.69 | −0.02 |
DM3 | Upstream300 m | 67.69 | 67.68 | −0.01 |
DM4 | Upstream200 m | 67.67 | 67.65 | −0.02 |
DM5 | Upstream100 m | 67.65 | 67.64 | −0.01 |
DM6 | tunnel cross-section | 67.63 | 67.62 | −0.01 |
DM7 | Downstream100 m | 67.61 | 67.6 | −0.01 |
DM8 | Downstream200 m | 67.59 | 67.59 | 0 |
DM9 | Downstream300 m | 67.57 | 67.58 | 0.01 |
DM10 | Downstream400 m | 67.55 | 67.57 | 0.02 |
DM11 | Downstream500 m | 67.53 | 67.51 | −0.02 |
Serial Number | Condition | Peak Flow at Upper Bound (m3/s) | Water Level at Lower Bound (m) | Sediment Content (kg/m3) | Median Particle Size (mm) | Recurrence Period |
---|---|---|---|---|---|---|
1 | Historical maximum flood | 23,100 | 81.1 | 4.65 | 0.287 | 300-year flood |
2 | Urban flood control design flood | 19,100 | 79.62 | 3.86 | 50- to 200-year flood | |
3 | The largest flood occurred in 2018 | 7540 | 72.03 | 1.52 | Less than a 2-year flood |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, M.; Feng, L.; Xu, F.; Yang, F.; Zhang, J.; Xu, B.; Lv, Y.; Huang, Y. A Study on the Maximum Scour Depth of River-Crossing Tunnels. Water 2024, 16, 2097. https://doi.org/10.3390/w16152097
Yang M, Feng L, Xu F, Yang F, Zhang J, Xu B, Lv Y, Huang Y. A Study on the Maximum Scour Depth of River-Crossing Tunnels. Water. 2024; 16(15):2097. https://doi.org/10.3390/w16152097
Chicago/Turabian StyleYang, Meiqing, Luojie Feng, Feng Xu, Fencheng Yang, Junhong Zhang, Bingqing Xu, Yuan Lv, and Yongjun Huang. 2024. "A Study on the Maximum Scour Depth of River-Crossing Tunnels" Water 16, no. 15: 2097. https://doi.org/10.3390/w16152097
APA StyleYang, M., Feng, L., Xu, F., Yang, F., Zhang, J., Xu, B., Lv, Y., & Huang, Y. (2024). A Study on the Maximum Scour Depth of River-Crossing Tunnels. Water, 16(15), 2097. https://doi.org/10.3390/w16152097